| Metamath
Proof Explorer Theorem List (p. 32 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30899) |
(30900-32422) |
(32423-49669) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | r19.29 3101 | Restricted quantifier version of 19.29 1873. See also r19.29r 3103. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
| Theorem | r19.29OLD 3102 | Obsolete version of r19.29 3101 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
| Theorem | r19.29r 3103 | Restricted quantifier version of 19.29r 1874; variation of r19.29 3101. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
| ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
| Theorem | r19.29rOLD 3104 | Obsolete version of r19.29r 3103 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
| Theorem | r19.29imd 3105 | Theorem 19.29 of [Margaris] p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
| Theorem | r19.40 3106 | Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.30 3107 | Restricted quantifier version of 19.30 1881. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 5-Nov-2024.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.43 3108 | Restricted quantifier version of 19.43 1882. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | 3r19.43 3109 | Restricted quantifier version of 19.43 1882 for a triple disjunction . (Contributed by AV, 2-Nov-2025.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∃𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | 2ralimi 3110 | Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | 3ralimi 3111 | Inference quantifying both antecedent and consequent three times, with strong hypothesis. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | ||
| Theorem | 4ralimi 3112 | Inference quantifying both antecedent and consequent four times, with strong hypothesis. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓) | ||
| Theorem | 5ralimi 3113 | Inference quantifying both antecedent and consequent five times, with strong hypothesis. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑡 ∈ 𝐸 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑡 ∈ 𝐸 𝜓) | ||
| Theorem | 6ralimi 3114 | Inference quantifying both antecedent and consequent six times, with strong hypothesis. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑡 ∈ 𝐸 ∀𝑢 ∈ 𝐹 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑡 ∈ 𝐸 ∀𝑢 ∈ 𝐹 𝜓) | ||
| Theorem | 2ralbii 3115 | Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | 2rexbii 3116 | Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | 3ralbii 3117 | Inference adding three restricted universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 25-Jul-2019.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | ||
| Theorem | 4ralbii 3118 | Inference adding four restricted universal quantifiers to both sides of an equivalence. (Contributed by Scott Fenton, 28-Feb-2025.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓) | ||
| Theorem | 2ralbiim 3119 | Split a biconditional and distribute two restricted universal quantifiers, analogous to 2albiim 1890 and ralbiim 3100. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ↔ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜑))) | ||
| Theorem | ralnex2 3120 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | ralnex3 3121 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) | ||
| Theorem | rexnal2 3122 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | rexnal3 3123 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑) | ||
| Theorem | nrexralim 3124 | Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009.) |
| ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) | ||
| Theorem | r19.26-2 3125 | Restricted quantifier version of 19.26-2 1871. Version of r19.26 3098 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | ||
| Theorem | 2r19.29 3126 | Theorem r19.29 3101 with two quantifiers. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
| ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓)) | ||
| Theorem | r19.29d2r 3127 | Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | ||
| Theorem | r2allem 3128 | Lemma factoring out common proof steps of r2alf 3263 and r2al 3180. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020.) |
| ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
| Theorem | r2exlem 3129 | Lemma factoring out common proof steps in r2exf 3264 an r2ex 3181. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 10-Jan-2020.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | ||
| Theorem | hbralrimi 3130 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). This theorem contains the common proof steps for ralrimi 3240 and ralrimiv 3131. Its main advantage over these two is its minimal references to axioms. The proof is extracted from NM's previous work. (Contributed by Wolf Lammen, 4-Dec-2019.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | ralrimiv 3131* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 4-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | ralrimiva 3132* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | rexlimiva 3133* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) Shorten dependent theorems. (Revised by Wolf lammen, 23-Dec-2024.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
| Theorem | rexlimiv 3134* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
| Theorem | nrexdv 3135* | Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | ralrimivw 3136* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | rexlimivw 3137* | Weaker version of rexlimiv 3134. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
| Theorem | ralrimdv 3138* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
| ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | rexlimdv 3139* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | ralrimdva 3140* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | rexlimdva 3141* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | rexlimdvaa 3142* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | rexlimdva2 3143* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | r19.29an 3144* | A commonly used pattern in the spirit of r19.29 3101. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) | ||
| Theorem | rexlimdv3a 3145* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 3139. (Contributed by NM, 7-Jun-2015.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | rexlimdvw 3146* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | rexlimddv 3147* | Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | r19.29a 3148* | A commonly used pattern in the spirit of r19.29 3101. (Contributed by Thierry Arnoux, 22-Nov-2017.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
| ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | ralimdv2 3149* | Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | reximdv2 3150* | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | reximdvai 3151* | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | ralimdva 3152* | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | reximdva 3153* | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | ralimdv 3154* | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by NM, 8-Oct-2003.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | reximdv 3155* | Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | reximddv 3156* | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
| Theorem | reximddv3 3157* | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
| Theorem | reximssdv 3158* | Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴 ⊆ 𝐵), deduction form. (Contributed by AV, 21-Aug-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
| Theorem | ralbidv2 3159* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | rexbidv2 3160* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | ralbidva 3161* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | rexbidva 3162* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Dec-2019.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | ralbidv 3163* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | rexbidv 3164* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | r19.21v 3165* | Restricted quantifier version of 19.21v 1939. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.21vOLD 3166* | Obsolete version of r19.21v 3165 as of 11-Dec-2024. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.37v 3167* | Restricted quantifier version of one direction of 19.37v 1991. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4477.) (Contributed by NM, 2-Apr-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.23v 3168* | Restricted quantifier version of 19.23v 1942. Version of r19.23 3239 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
| Theorem | r19.36v 3169* | Restricted quantifier version of one direction of 19.36 2230. (The other direction holds iff 𝐴 is nonempty, see r19.36zv 4482.) (Contributed by NM, 22-Oct-2003.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
| Theorem | rexlimivOLD 3170* | Obsolete version of rexlimiv 3134 as of 19-Dec-2024.) (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
| Theorem | rexlimivaOLD 3171* | Obsolete version of rexlimiva 3133 as of 23-Dec-2024. (Contributed by NM, 18-Dec-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
| Theorem | rexlimivwOLD 3172* | Obsolete version of rexlimivw 3137 as of 23-Dec-2024. (Contributed by FL, 19-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
| Theorem | r19.27v 3173* | Restricted quantitifer version of one direction of 19.27 2227. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.27zv 4481.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
| Theorem | r19.41v 3174* | Restricted quantifier version 19.41v 1949. Version of r19.41 3246 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) | ||
| Theorem | r19.28v 3175* | Restricted quantifier version of one direction of 19.28 2228. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.28zv 4476.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
| Theorem | r19.42v 3176* | Restricted quantifier version of 19.42v 1953 (see also 19.42 2236). (Contributed by NM, 27-May-1998.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.32v 3177* | Restricted quantifier version of 19.32v 1940. (Contributed by NM, 25-Nov-2003.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.45v 3178* | Restricted quantifier version of one direction of 19.45 2238. The other direction holds when 𝐴 is nonempty, see r19.45zv 4478. (Contributed by NM, 2-Apr-2004.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | r19.44v 3179* | One direction of a restricted quantifier version of 19.44 2237. The other direction holds when 𝐴 is nonempty, see r19.44zv 4479. (Contributed by NM, 2-Apr-2004.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓)) | ||
| Theorem | r2al 3180* | Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
| Theorem | r2ex 3181* | Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | ||
| Theorem | r3al 3182* | Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑)) | ||
| Theorem | r3ex 3183* | Triple existential quantification. (Contributed by AV, 21-Jul-2025.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑥∃𝑦∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) | ||
| Theorem | rgen2 3184* | Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3350 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
| Theorem | ralrimivv 3185* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | rexlimivv 3186* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) | ||
| Theorem | ralrimivva 3187* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | ralrimdvv 3188* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.) |
| ⊢ (𝜑 → (𝜓 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | rgen3 3189* | Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 | ||
| Theorem | ralrimivvva 3190* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | ||
| Theorem | ralimdvva 3191* | Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by AV, 27-Nov-2019.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | reximdvva 3192* | Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | ralimdvv 3193* | Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | ralimd4v 3194* | Deduction quadrupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜒)) | ||
| Theorem | ralimd6v 3195* | Deduction sextupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜒)) | ||
| Theorem | ralrimdvva 3196* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | rexlimdvv 3197* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
| Theorem | rexlimdvva 3198* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
| Theorem | rexlimdvvva 3199* | Inference from Theorem 19.23 of [Margaris] p. 90, for three restricted quantifiers. (Contributed by AV, 23-Aug-2025.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) | ||
| Theorem | reximddv2 3200* | Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |