Home | Metamath
Proof Explorer Theorem List (p. 32 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hbralrimi 3101 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). This theorem contains the common proof steps for ralrimi 3141 and ralrimiv 3102. Its main advantage over these two is its minimal references to axioms. The proof is extracted from NM's previous work. (Contributed by Wolf Lammen, 4-Dec-2019.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimiv 3102* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 4-Dec-2019.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimiva 3103* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimivw 3104* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimdv 3105* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralrimdva 3106* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralimdv2 3107* | Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | ralimdva 3108* | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralimdv 3109* | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1813). (Contributed by NM, 8-Oct-2003.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbidv2 3110* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | ralbidva 3111* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbidv 3112* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | r19.21v 3113* | Restricted quantifier version of 19.21v 1942. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.21vOLD 3114* | Obsolete version of r19.21v 3113 as of 11-Dec-2024. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.27v 3115* | Restricted quantitifer version of one direction of 19.27 2220. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.27zv 4436.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.28v 3116* | Restricted quantifier version of one direction of 19.28 2221. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.28zv 4431.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r2allem 3117 | Lemma factoring out common proof steps of r2alf 3147 and r2al 3118. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020.) |
⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r2al 3118* | Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r3al 3119* | Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑)) | ||
Theorem | rgen2 3120* | Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3158 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | rgen3 3121* | Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 | ||
Theorem | ralrimivv 3122* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
Theorem | ralrimivva 3123* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
Theorem | ralrimdvv 3124* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.) |
⊢ (𝜑 → (𝜓 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | ralrimdvva 3125* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | ralimdvva 3126* | Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1813). (Contributed by AV, 27-Nov-2019.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | ralrimivvva 3127* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | ||
Theorem | 2ralbidva 3128* | Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | 2ralbidv 3129* | Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rspw 3130* | Restricted specialization. Weak version of rsp 3131, requiring ax-8 2108, but not ax-12 2171. (Contributed by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | rsp 3131 | Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | rspa 3132 | Restricted specialization. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜑) | ||
Theorem | rspec 3133 | Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 𝜑 ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝜑) | ||
Theorem | r19.21bi 3134 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 11-Jun-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | ||
Theorem | r19.21be 3135 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) | ||
Theorem | rspec2 3136 | Specialization rule for restricted quantification, with two quantifiers. (Contributed by NM, 20-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | ||
Theorem | rspec3 3137 | Specialization rule for restricted quantification, with three quantifiers. (Contributed by NM, 20-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | ||
Theorem | rsp2 3138 | Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r19.21t 3139 | Restricted quantifier version of 19.21t 2199; closed form of r19.21 3140. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Wolf Lammen, 2-Jan-2020.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.21 3140 | Restricted quantifier version of 19.21 2200. (Contributed by Scott Fenton, 30-Mar-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | ralrimi 3141 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) Shortened after introduction of hbralrimi 3101. (Revised by Wolf Lammen, 4-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralimdaa 3142 | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralrimd 3143 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | nfra1 3144 | The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | hbra1 3145 | The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | hbral 3146 | Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥∀𝑦 ∈ 𝐴 𝜑) | ||
Theorem | r2alf 3147* | Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2allem 3117. (Revised by Wolf Lammen, 9-Jan-2020.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | nfraldw 3148* | Deduction version of nfralw 3151. Version of nfrald 3150 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 24-Sep-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfraldwOLD 3149* | Obsolete version of nfraldw 3148 as of 24-Sep-2024. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfrald 3150 | Deduction version of nfral 3153. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfraldw 3148 when possible. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfralw 3151* | Bound-variable hypothesis builder for restricted quantification. Version of nfral 3153 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 13-Dec-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfralwOLD 3152* | Obsolete version of nfralw 3151 as of 13-Dec-2024. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfral 3153 | Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfralw 3151 when possible. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfra2w 3154* | Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 42480. Version of nfra2 3157 with a disjoint variable condition not requiring ax-13 2372. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | nfra2wOLD 3155* | Obsolete version of nfra2w 3154 as of 31-Oct-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | nfra2wOLDOLD 3156* | Obsolete version of nfra2w 3154 as of 24-Sep-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | nfra2 3157* | Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 42480. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfra2w 3154 when possible. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | rgen2a 3158* | Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2451. This theorem relies on the full set of axioms up to ax-ext 2709 and it should no longer be used. Usage of rgen2 3120 is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | ralbida 3159 | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbidaOLD 3160 | Obsolete version of ralbida 3159 as of 31-Oct-2024. (Contributed by NM, 6-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbid 3161 | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | 2ralbida 3162* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | raleqbii 3163 | Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) | ||
Theorem | ralcom4 3164* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom4OLD 3165* | Obsolete version of ralcom4 3164 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom 3166* | Commutation of restricted universal quantifiers. See ralcom2 3290 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3290 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralnex 3167 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by BJ, 16-Jul-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | dfral2 3168 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3169. (Revised by Wolf Lammen, 9-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | rexnal 3169 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 9-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | dfrex2 3170 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | rexex 3171 | Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) | ||
Theorem | rexim 3172 | Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rexbi 3173 | Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rexbiOLD 3174 | Obsolete version of rexbi 3173 as of 31-Oct-2024. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | reximi2 3175 | Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | reximia 3176 | Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximiaOLD 3177 | Obsolete version of reximia 3176 as of 31-Oct-2024. (Contributed by NM, 10-Feb-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximi 3178 | Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbii2 3179 | Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | rexbiia 3180 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbii 3181 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Dec-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | 2rexbii 3182 | Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | ||
Theorem | rexanid 3183 | Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018.) (Proof shortened by Wolf Lammen, 8-Jul-2023.) |
⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | r19.29 3184 | Restricted quantifier version of 19.29 1876. See also r19.29r 3185. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29r 3185 | Restricted quantifier version of 19.29r 1877; variation of r19.29 3184. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29imd 3186 | Theorem 19.29 of [Margaris] p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
Theorem | rexnal2 3187 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | ||
Theorem | rexnal3 3188 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑) | ||
Theorem | ralnex2 3189 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | ralnex3 3190 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) | ||
Theorem | ralinexa 3191 | A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | rexanali 3192 | A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | ||
Theorem | nrexralim 3193 | Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009.) |
⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | risset 3194* | Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | ||
Theorem | nelb 3195* | A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
Theorem | nelbOLD 3196* | Obsolete version of nelb 3195 as of 3-Nov-2024. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
Theorem | nrex 3197 | Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) ⇒ ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 | ||
Theorem | nrexdv 3198* | Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximdv2 3199* | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | reximdvai 3200* | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |