Home | Metamath
Proof Explorer Theorem List (p. 32 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ralimdv2 3101* | Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | ralimdva 3102* | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralimdv 3103* | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1814). (Contributed by NM, 8-Oct-2003.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralimdvva 3104* | Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1814). (Contributed by AV, 27-Nov-2019.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | hbralrimi 3105 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). This theorem contains the common proof steps for ralrimi 3139 and ralrimiv 3106. Its main advantage over these two is its minimal references to axioms. The proof is extracted from NM's previous work. (Contributed by Wolf Lammen, 4-Dec-2019.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimiv 3106* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 4-Dec-2019.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimiva 3107* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimivw 3108* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | r19.27v 3109* | Restricted quantitifer version of one direction of 19.27 2223. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.27zv 4433.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.28v 3110* | Restricted quantifier version of one direction of 19.28 2224. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.28zv 4428.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | ralrimdv 3111* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralrimdva 3112* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralrimivv 3113* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
Theorem | ralrimivva 3114* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
Theorem | ralrimivvva 3115* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | ||
Theorem | ralrimdvv 3116* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.) |
⊢ (𝜑 → (𝜓 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | ralrimdvva 3117* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | ralbidv2 3118* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | ralbidva 3119* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbidv 3120* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | 2ralbidva 3121* | Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | 2ralbidv 3122* | Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | r2allem 3123 | Lemma factoring out common proof steps of r2alf 3145 and r2al 3124. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020.) |
⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r2al 3124* | Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r3al 3125* | Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑)) | ||
Theorem | rgen2 3126* | Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3155 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | rgen3 3127* | Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 | ||
Theorem | rspw 3128* | Restricted specialization. Weak version of rsp 3129, requiring ax-8 2110, but not ax-12 2173. (Contributed by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | rsp 3129 | Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | rspa 3130 | Restricted specialization. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜑) | ||
Theorem | rspec 3131 | Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 𝜑 ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝜑) | ||
Theorem | r19.21bi 3132 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 11-Jun-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | ||
Theorem | r19.21be 3133 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) | ||
Theorem | rspec2 3134 | Specialization rule for restricted quantification, with two quantifiers. (Contributed by NM, 20-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | ||
Theorem | rspec3 3135 | Specialization rule for restricted quantification, with three quantifiers. (Contributed by NM, 20-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | ||
Theorem | rsp2 3136 | Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r19.21t 3137 | Restricted quantifier version of 19.21t 2202; closed form of r19.21 3138. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Wolf Lammen, 2-Jan-2020.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.21 3138 | Restricted quantifier version of 19.21 2203. (Contributed by Scott Fenton, 30-Mar-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | ralrimi 3139 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) Shortened after introduction of hbralrimi 3105. (Revised by Wolf Lammen, 4-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralimdaa 3140 | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralrimd 3141 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | nfra1 3142 | The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | hbra1 3143 | The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | hbral 3144 | Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥∀𝑦 ∈ 𝐴 𝜑) | ||
Theorem | r2alf 3145* | Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2allem 3123. (Revised by Wolf Lammen, 9-Jan-2020.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | nfraldw 3146* | Deduction version of nfralw 3149. Version of nfrald 3148 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 24-Sep-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfraldwOLD 3147* | Obsolete version of nfraldw 3146 as of 24-Sep-2024. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfrald 3148 | Deduction version of nfral 3150. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfraldw 3146 when possible. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfralw 3149* | Bound-variable hypothesis builder for restricted quantification. Version of nfral 3150 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfral 3150 | Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfralw 3149 when possible. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfra2w 3151* | Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 42369. Version of nfra2 3154 with a disjoint variable condition not requiring ax-13 2372. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | nfra2wOLD 3152* | Obsolete version of nfra2w 3151 as of 31-Oct-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | nfra2wOLDOLD 3153* | Obsolete version of nfra2w 3151 as of 24-Sep-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | nfra2 3154* | Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 42369. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfra2w 3151 when possible. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | rgen2a 3155* | Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2451. This theorem relies on the full set of axioms up to ax-ext 2709 and it should no longer be used. Usage of rgen2 3126 is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | ralbida 3156 | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbidaOLD 3157 | Obsolete version of ralbida 3156 as of 31-Oct-2024. (Contributed by NM, 6-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbid 3158 | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | 2ralbida 3159* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | raleqbii 3160 | Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) | ||
Theorem | ralcom4 3161* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom4OLD 3162* | Obsolete version of ralcom4 3161 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralnex 3163 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by BJ, 16-Jul-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | dfral2 3164 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3165. (Revised by Wolf Lammen, 9-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | rexnal 3165 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 9-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | dfrex2 3166 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | rexex 3167 | Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) | ||
Theorem | rexim 3168 | Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rexbi 3169 | Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rexbiOLD 3170 | Obsolete version of rexbi 3169 as of 31-Oct-2024. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | reximi2 3171 | Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | reximia 3172 | Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximiaOLD 3173 | Obsolete version of reximia 3172 as of 31-Oct-2024. (Contributed by NM, 10-Feb-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximi 3174 | Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbii2 3175 | Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | rexbiia 3176 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbii 3177 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Dec-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | 2rexbii 3178 | Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | ||
Theorem | rexcom4 3179* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | 2ex2rexrot 3180* | Rotate two existential quantifiers and two restricted existential quantifiers. (Contributed by AV, 9-Nov-2023.) |
⊢ (∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑) | ||
Theorem | rexcom4a 3181* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | rexanid 3182 | Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018.) (Proof shortened by Wolf Lammen, 8-Jul-2023.) |
⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | r19.29 3183 | Restricted quantifier version of 19.29 1877. See also r19.29r 3184. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29r 3184 | Restricted quantifier version of 19.29r 1878; variation of r19.29 3183. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29imd 3185 | Theorem 19.29 of [Margaris] p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
Theorem | rexnal2 3186 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | ||
Theorem | rexnal3 3187 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑) | ||
Theorem | ralnex2 3188 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | ralnex3 3189 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) | ||
Theorem | ralinexa 3190 | A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | rexanali 3191 | A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | ||
Theorem | nrexralim 3192 | Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009.) |
⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | risset 3193* | Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | ||
Theorem | nelb 3194* | A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
Theorem | nelbOLD 3195* | Obsolete version of nelb 3194 as of 3-Nov-2024. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
Theorem | nrex 3196 | Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) ⇒ ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 | ||
Theorem | nrexdv 3197* | Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximdv2 3198* | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | reximdvai 3199* | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reximdvaiOLD 3200* | Obsolete version of reximdvai 3199 as of 3-Nov-2024. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |