Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ralimi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | ralimia 3085 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Copyright terms: Public domain | W3C validator |