|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abciffcbatnabciffncbai | Structured version Visualization version GIF version | ||
| Description: Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020.) | 
| Ref | Expression | 
|---|---|
| abciffcbatnabciffncbai.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | 
| Ref | Expression | 
|---|---|
| abciffcbatnabciffncbai | ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abciffcbatnabciffncbai.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | |
| 2 | notbi 319 | . . . 4 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) ↔ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑))) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) → (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑))) | 
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | 
| 5 | 4 | biimpi 216 | 1 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |