MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notbi Structured version   Visualization version   GIF version

Theorem notbi 318
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.)
Assertion
Ref Expression
notbi ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))

Proof of Theorem notbi
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21notbid 317 . 2 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
3 id 22 . . 3 ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
43con4bid 316 . 2 ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑𝜓))
52, 4impbii 208 1 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  notbii  319  con4bii  320  con2bi  353  nbn2  370  pm5.32  573  norass  1535  hadnot  1605  had0  1607  cbvexdw  2338  cbvexd  2408  rexbiOLD  3170  vtoclgft  3482  rexprg  4629  isocnv3  7183  suppimacnv  7961  sumodd  16025  f1omvdco3  18972  ist0cld  31685  onsuct0  34557  bj-cbvexdv  34909  wl-3xornot  35579  ifpbi1  40982  ifpbi13  40994  abciffcbatnabciffncba  44311  abciffcbatnabciffncbai  44312  ichn  44796
  Copyright terms: Public domain W3C validator