Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notbi | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
Ref | Expression |
---|---|
notbi | ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | id 22 | . . 3 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
4 | 3 | con4bid 317 | . 2 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑 ↔ 𝜓)) |
5 | 2, 4 | impbii 208 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbii 320 con4bii 321 con2bi 354 nbn2 371 pm5.32 574 norass 1535 hadnot 1604 had0 1606 cbvexdw 2336 cbvexd 2408 rexbiOLD 3174 vtoclgft 3492 rexprg 4632 isocnv3 7203 suppimacnv 7990 sumodd 16097 f1omvdco3 19057 ist0cld 31783 onsuct0 34630 bj-cbvexdv 34982 wl-3xornot 35652 ifpbi1 41084 ifpbi13 41096 abciffcbatnabciffncba 44424 abciffcbatnabciffncbai 44425 ichn 44908 |
Copyright terms: Public domain | W3C validator |