MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notbi Structured version   Visualization version   GIF version

Theorem notbi 319
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.)
Assertion
Ref Expression
notbi ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))

Proof of Theorem notbi
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21notbid 318 . 2 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
3 id 22 . . 3 ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
43con4bid 317 . 2 ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑𝜓))
52, 4impbii 209 1 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  notbii  320  con4bii  321  con2bi  353  nbn2  370  pm5.32  573  norass  1537  hadnot  1602  had0  1604  cbvexdw  2337  cbvexd  2407  rexprg  4664  isocnv3  7310  suppimacnv  8156  sumodd  16365  f1omvdco3  19386  ist0cld  33830  onsuct0  36436  bj-cbvexdv  36795  wl-3xornot  37476  ifpbi1  43473  ifpbi13  43485  abciffcbatnabciffncba  46934  abciffcbatnabciffncbai  46935  ichn  47461
  Copyright terms: Public domain W3C validator