| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notbi | Structured version Visualization version GIF version | ||
| Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| notbi | ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | id 22 | . . 3 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 4 | 3 | con4bid 317 | . 2 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbii 320 con4bii 321 con2bi 353 nbn2 370 pm5.32 573 norass 1537 hadnot 1602 had0 1604 cbvexdw 2337 cbvexd 2406 rexprg 4657 isocnv3 7289 suppimacnv 8130 sumodd 16334 f1omvdco3 19355 ist0cld 33796 onsuct0 36402 bj-cbvexdv 36761 wl-3xornot 37442 ifpbi1 43439 ifpbi13 43451 abciffcbatnabciffncba 46903 abciffcbatnabciffncbai 46904 ichn 47430 |
| Copyright terms: Public domain | W3C validator |