Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notbi | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
Ref | Expression |
---|---|
notbi | ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | id 22 | . . 3 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
4 | 3 | con4bid 316 | . 2 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑 ↔ 𝜓)) |
5 | 2, 4 | impbii 208 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbii 319 con4bii 320 con2bi 353 nbn2 370 pm5.32 573 norass 1535 hadnot 1605 had0 1607 cbvexdw 2338 cbvexd 2408 rexbiOLD 3170 vtoclgft 3482 rexprg 4629 isocnv3 7183 suppimacnv 7961 sumodd 16025 f1omvdco3 18972 ist0cld 31685 onsuct0 34557 bj-cbvexdv 34909 wl-3xornot 35579 ifpbi1 40982 ifpbi13 40994 abciffcbatnabciffncba 44311 abciffcbatnabciffncbai 44312 ichn 44796 |
Copyright terms: Public domain | W3C validator |