| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notbi | Structured version Visualization version GIF version | ||
| Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| notbi | ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | id 22 | . . 3 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 4 | 3 | con4bid 317 | . 2 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbii 320 con4bii 321 con2bi 353 nbn2 370 pm5.32 573 norass 1537 hadnot 1602 had0 1604 cbvexdw 2341 cbvexd 2413 rexbiOLD 3105 rexprg 4697 isocnv3 7352 suppimacnv 8199 sumodd 16425 f1omvdco3 19467 ist0cld 33832 onsuct0 36442 bj-cbvexdv 36801 wl-3xornot 37482 ifpbi1 43490 ifpbi13 43502 abciffcbatnabciffncba 46941 abciffcbatnabciffncbai 46942 ichn 47443 |
| Copyright terms: Public domain | W3C validator |