| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notbi | Structured version Visualization version GIF version | ||
| Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| notbi | ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | id 22 | . . 3 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 4 | 3 | con4bid 317 | . 2 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbii 320 con4bii 321 con2bi 353 nbn2 370 pm5.32 573 norass 1537 hadnot 1602 had0 1604 cbvexdw 2337 cbvexd 2407 rexprg 4664 isocnv3 7310 suppimacnv 8156 sumodd 16365 f1omvdco3 19386 ist0cld 33830 onsuct0 36436 bj-cbvexdv 36795 wl-3xornot 37476 ifpbi1 43473 ifpbi13 43485 abciffcbatnabciffncba 46934 abciffcbatnabciffncbai 46935 ichn 47461 |
| Copyright terms: Public domain | W3C validator |