| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notbi | Structured version Visualization version GIF version | ||
| Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| notbi | ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | id 22 | . . 3 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 4 | 3 | con4bid 317 | . 2 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbii 320 con4bii 321 con2bi 353 nbn2 370 pm5.32 573 norass 1537 hadnot 1602 had0 1604 cbvexdw 2337 cbvexd 2406 rexprg 4661 isocnv3 7307 suppimacnv 8153 sumodd 16358 f1omvdco3 19379 ist0cld 33823 onsuct0 36429 bj-cbvexdv 36788 wl-3xornot 37469 ifpbi1 43466 ifpbi13 43478 abciffcbatnabciffncba 46930 abciffcbatnabciffncbai 46931 ichn 47457 |
| Copyright terms: Public domain | W3C validator |