MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notbi Structured version   Visualization version   GIF version

Theorem notbi 319
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.)
Assertion
Ref Expression
notbi ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))

Proof of Theorem notbi
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21notbid 318 . 2 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
3 id 22 . . 3 ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
43con4bid 317 . 2 ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑𝜓))
52, 4impbii 208 1 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  notbii  320  con4bii  321  con2bi  354  nbn2  371  pm5.32  574  norass  1535  hadnot  1604  had0  1606  cbvexdw  2336  cbvexd  2408  rexbiOLD  3174  vtoclgft  3492  rexprg  4632  isocnv3  7203  suppimacnv  7990  sumodd  16097  f1omvdco3  19057  ist0cld  31783  onsuct0  34630  bj-cbvexdv  34982  wl-3xornot  35652  ifpbi1  41084  ifpbi13  41096  abciffcbatnabciffncba  44424  abciffcbatnabciffncbai  44425  ichn  44908
  Copyright terms: Public domain W3C validator