| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abciffcbatnabciffncba | Structured version Visualization version GIF version | ||
| Description: Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. Closed form. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| Ref | Expression |
|---|---|
| abciffcbatnabciffncba | ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an31 648 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | |
| 2 | notbi 319 | . . . 4 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) ↔ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑))) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) → (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑))) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) |
| 5 | 4 | biimpi 216 | 1 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |