Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nabctnabc | Structured version Visualization version GIF version |
Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020.) |
Ref | Expression |
---|---|
nabctnabc.1 | ⊢ ¬ (𝜑 → (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
nabctnabc | ⊢ (¬ 𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nabctnabc.1 | . . . . . . . 8 ⊢ ¬ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | pm4.61 405 | . . . . . . . . 9 ⊢ (¬ (𝜑 → (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ¬ (𝜓 ∧ 𝜒))) | |
3 | 2 | biimpi 215 | . . . . . . . 8 ⊢ (¬ (𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 ∧ ¬ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | ax-mp 5 | . . . . . . 7 ⊢ (𝜑 ∧ ¬ (𝜓 ∧ 𝜒)) |
5 | 4 | simpli 484 | . . . . . 6 ⊢ 𝜑 |
6 | 4 | simpri 486 | . . . . . 6 ⊢ ¬ (𝜓 ∧ 𝜒) |
7 | 5, 6 | 2th 263 | . . . . 5 ⊢ (𝜑 ↔ ¬ (𝜓 ∧ 𝜒)) |
8 | bicom 221 | . . . . . 6 ⊢ ((𝜑 ↔ ¬ (𝜓 ∧ 𝜒)) ↔ (¬ (𝜓 ∧ 𝜒) ↔ 𝜑)) | |
9 | 8 | biimpi 215 | . . . . 5 ⊢ ((𝜑 ↔ ¬ (𝜓 ∧ 𝜒)) → (¬ (𝜓 ∧ 𝜒) ↔ 𝜑)) |
10 | 7, 9 | ax-mp 5 | . . . 4 ⊢ (¬ (𝜓 ∧ 𝜒) ↔ 𝜑) |
11 | 10 | biimpi 215 | . . 3 ⊢ (¬ (𝜓 ∧ 𝜒) → 𝜑) |
12 | 11 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ ¬ (𝜓 ∧ 𝜒)) |
13 | 12 | notnotrd 133 | 1 ⊢ (¬ 𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |