Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantl6r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
adantl6r.1 | ⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
Ref | Expression |
---|---|
adantl6r | ⊢ ((((((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantl6r.1 | . . . 4 ⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | |
2 | 1 | ex 412 | . . 3 ⊢ ((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) |
3 | 2 | adantl5r 759 | . 2 ⊢ (((((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) |
4 | 3 | imp 406 | 1 ⊢ ((((((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pstmxmet 31749 |
Copyright terms: Public domain | W3C validator |