Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑎 ∈
𝑥 ∃𝑏 ∈ 𝑦 𝑧 = (𝑎𝐷𝑏)}) = (𝑥 ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑎 ∈
𝑥 ∃𝑏 ∈ 𝑦 𝑧 = (𝑎𝐷𝑏)}) |
2 | | vex 3436 |
. . . . . . 7
⊢ 𝑥 ∈ V |
3 | | vex 3436 |
. . . . . . 7
⊢ 𝑦 ∈ V |
4 | 2, 3 | ab2rexex 7822 |
. . . . . 6
⊢ {𝑧 ∣ ∃𝑎 ∈ 𝑥 ∃𝑏 ∈ 𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V |
5 | 4 | uniex 7594 |
. . . . 5
⊢ ∪ {𝑧
∣ ∃𝑎 ∈
𝑥 ∃𝑏 ∈ 𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V |
6 | 1, 5 | fnmpoi 7910 |
. . . 4
⊢ (𝑥 ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑎 ∈
𝑥 ∃𝑏 ∈ 𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ∼ ) × (𝑋 / ∼ )) |
7 | | pstmval.1 |
. . . . . 6
⊢ ∼ =
(~Met‘𝐷) |
8 | 7 | pstmval 31845 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑎 ∈
𝑥 ∃𝑏 ∈ 𝑦 𝑧 = (𝑎𝐷𝑏)})) |
9 | 8 | fneq1d 6526 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) Fn ((𝑋 / ∼ ) × (𝑋 / ∼ )) ↔ (𝑥 ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑎 ∈
𝑥 ∃𝑏 ∈ 𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ∼ ) × (𝑋 / ∼
)))) |
10 | 6, 9 | mpbiri 257 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) Fn ((𝑋 / ∼ ) × (𝑋 / ∼
))) |
11 | | simpllr 773 |
. . . . . . . . 9
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → 𝑥 = [𝑎] ∼ ) |
12 | | simpr 485 |
. . . . . . . . 9
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → 𝑦 = [𝑏] ∼ ) |
13 | 11, 12 | oveq12d 7293 |
. . . . . . . 8
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ )) |
14 | | simp-5l 782 |
. . . . . . . . 9
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → 𝐷 ∈ (PsMet‘𝑋)) |
15 | | simp-4r 781 |
. . . . . . . . 9
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → 𝑎 ∈ 𝑋) |
16 | | simplr 766 |
. . . . . . . . 9
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → 𝑏 ∈ 𝑋) |
17 | 7 | pstmfval 31846 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = (𝑎𝐷𝑏)) |
18 | 14, 15, 16, 17 | syl3anc 1370 |
. . . . . . . 8
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → ([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = (𝑎𝐷𝑏)) |
19 | 13, 18 | eqtrd 2778 |
. . . . . . 7
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏)) |
20 | | psmetf 23459 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
21 | 14, 20 | syl 17 |
. . . . . . . 8
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
22 | 21, 15, 16 | fovrnd 7444 |
. . . . . . 7
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (𝑎𝐷𝑏) ∈
ℝ*) |
23 | 19, 22 | eqeltrd 2839 |
. . . . . 6
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ∈
ℝ*) |
24 | | elqsi 8559 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑋 / ∼ ) →
∃𝑏 ∈ 𝑋 𝑦 = [𝑏] ∼ ) |
25 | 24 | ad2antll 726 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) →
∃𝑏 ∈ 𝑋 𝑦 = [𝑏] ∼ ) |
26 | 25 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) →
∃𝑏 ∈ 𝑋 𝑦 = [𝑏] ∼ ) |
27 | 23, 26 | r19.29a 3218 |
. . . . 5
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ∈
ℝ*) |
28 | | elqsi 8559 |
. . . . . 6
⊢ (𝑥 ∈ (𝑋 / ∼ ) →
∃𝑎 ∈ 𝑋 𝑥 = [𝑎] ∼ ) |
29 | 28 | ad2antrl 725 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) →
∃𝑎 ∈ 𝑋 𝑥 = [𝑎] ∼ ) |
30 | 27, 29 | r19.29a 3218 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) → (𝑥(pstoMet‘𝐷)𝑦) ∈
ℝ*) |
31 | 30 | ralrimivva 3123 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / ∼ )∀𝑦 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ∈
ℝ*) |
32 | | ffnov 7401 |
. . 3
⊢
((pstoMet‘𝐷):((𝑋 / ∼ ) × (𝑋 / ∼
))⟶ℝ* ↔ ((pstoMet‘𝐷) Fn ((𝑋 / ∼ ) × (𝑋 / ∼ )) ∧
∀𝑥 ∈ (𝑋 / ∼ )∀𝑦 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ∈
ℝ*)) |
33 | 10, 31, 32 | sylanbrc 583 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷):((𝑋 / ∼ ) × (𝑋 / ∼
))⟶ℝ*) |
34 | 17 | 3expa 1117 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → ([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = (𝑎𝐷𝑏)) |
35 | 34 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → (([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = 0 ↔ (𝑎𝐷𝑏) = 0)) |
36 | 7 | breqi 5080 |
. . . . . . . . . . . 12
⊢ (𝑎 ∼ 𝑏 ↔ 𝑎(~Met‘𝐷)𝑏) |
37 | | metidv 31842 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(~Met‘𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0)) |
38 | 37 | anassrs 468 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → (𝑎(~Met‘𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0)) |
39 | 36, 38 | syl5bb 283 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → (𝑎 ∼ 𝑏 ↔ (𝑎𝐷𝑏) = 0)) |
40 | | metider 31844 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (PsMet‘𝑋) →
(~Met‘𝐷)
Er 𝑋) |
41 | 40 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → (~Met‘𝐷) Er 𝑋) |
42 | | ereq1 8505 |
. . . . . . . . . . . . . 14
⊢ ( ∼ =
(~Met‘𝐷)
→ ( ∼ Er 𝑋 ↔
(~Met‘𝐷)
Er 𝑋)) |
43 | 7, 42 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ( ∼ Er
𝑋 ↔
(~Met‘𝐷)
Er 𝑋) |
44 | 41, 43 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → ∼ Er 𝑋) |
45 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → 𝑎 ∈ 𝑋) |
46 | 44, 45 | erth 8547 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → (𝑎 ∼ 𝑏 ↔ [𝑎] ∼ = [𝑏] ∼ )) |
47 | 35, 39, 46 | 3bitr2d 307 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → (([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = 0 ↔ [𝑎] ∼ = [𝑏] ∼ )) |
48 | 47 | adantllr 716 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → (([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = 0 ↔ [𝑎] ∼ = [𝑏] ∼ )) |
49 | 48 | adantlr 712 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) → (([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = 0 ↔ [𝑎] ∼ = [𝑏] ∼ )) |
50 | 49 | adantr 481 |
. . . . . . 7
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = 0 ↔ [𝑎] ∼ = [𝑏] ∼ )) |
51 | 13 | eqeq1d 2740 |
. . . . . . 7
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ ([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) =
0)) |
52 | 11, 12 | eqeq12d 2754 |
. . . . . . 7
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (𝑥 = 𝑦 ↔ [𝑎] ∼ = [𝑏] ∼ )) |
53 | 50, 51, 52 | 3bitr4d 311 |
. . . . . 6
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧
(𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
54 | 53, 26 | r19.29a 3218 |
. . . . 5
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
55 | 54, 29 | r19.29a 3218 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
56 | | simp-6l 784 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → 𝐷 ∈ (PsMet‘𝑋)) |
57 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → 𝑐 ∈ 𝑋) |
58 | | simp-6r 785 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → 𝑎 ∈ 𝑋) |
59 | | simp-4r 781 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → 𝑏 ∈ 𝑋) |
60 | | psmettri2 23462 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
61 | 56, 57, 58, 59, 60 | syl13anc 1371 |
. . . . . . . . . . . . 13
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
62 | | simp-5r 783 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → 𝑥 = [𝑎] ∼ ) |
63 | | simpllr 773 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → 𝑦 = [𝑏] ∼ ) |
64 | 62, 63 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ )) |
65 | 56, 58, 59, 17 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → ([𝑎] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = (𝑎𝐷𝑏)) |
66 | 64, 65 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏)) |
67 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → 𝑧 = [𝑐] ∼ ) |
68 | 67, 62 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑧(pstoMet‘𝐷)𝑥) = ([𝑐] ∼
(pstoMet‘𝐷)[𝑎] ∼ )) |
69 | 7 | pstmfval 31846 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋) → ([𝑐] ∼
(pstoMet‘𝐷)[𝑎] ∼ ) = (𝑐𝐷𝑎)) |
70 | 56, 57, 58, 69 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → ([𝑐] ∼
(pstoMet‘𝐷)[𝑎] ∼ ) = (𝑐𝐷𝑎)) |
71 | 68, 70 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑧(pstoMet‘𝐷)𝑥) = (𝑐𝐷𝑎)) |
72 | 67, 63 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑧(pstoMet‘𝐷)𝑦) = ([𝑐] ∼
(pstoMet‘𝐷)[𝑏] ∼ )) |
73 | 7 | pstmfval 31846 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ([𝑐] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = (𝑐𝐷𝑏)) |
74 | 56, 57, 59, 73 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → ([𝑐] ∼
(pstoMet‘𝐷)[𝑏] ∼ ) = (𝑐𝐷𝑏)) |
75 | 72, 74 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑧(pstoMet‘𝐷)𝑦) = (𝑐𝐷𝑏)) |
76 | 71, 75 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
77 | 61, 66, 76 | 3brtr4d 5106 |
. . . . . . . . . . . 12
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
78 | 77 | adantl6r 761 |
. . . . . . . . . . 11
⊢
((((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
79 | | elqsi 8559 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑋 / ∼ ) →
∃𝑐 ∈ 𝑋 𝑧 = [𝑐] ∼ ) |
80 | 79 | ad5antlr 732 |
. . . . . . . . . . 11
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) →
∃𝑐 ∈ 𝑋 𝑧 = [𝑐] ∼ ) |
81 | 78, 80 | r19.29a 3218 |
. . . . . . . . . 10
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
82 | 81 | adantl5r 760 |
. . . . . . . . 9
⊢
(((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
83 | 24 | ad4antlr 730 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) →
∃𝑏 ∈ 𝑋 𝑦 = [𝑏] ∼ ) |
84 | 82, 83 | r19.29a 3218 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
85 | 84 | adantl4r 752 |
. . . . . . 7
⊢
((((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ 𝑎 ∈ 𝑋) ∧ 𝑥 = [𝑎] ∼ ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
86 | 28 | ad3antlr 728 |
. . . . . . 7
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) →
∃𝑎 ∈ 𝑋 𝑥 = [𝑎] ∼ ) |
87 | 85, 86 | r19.29a 3218 |
. . . . . 6
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
88 | 87 | ralrimiva 3103 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) →
∀𝑧 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
89 | 88 | anasss 467 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) →
∀𝑧 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))) |
90 | 55, 89 | jca 512 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) → (((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))) |
91 | 90 | ralrimivva 3123 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / ∼ )∀𝑦 ∈ (𝑋 / ∼ )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))) |
92 | | elfvex 6807 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) |
93 | | qsexg 8564 |
. . 3
⊢ (𝑋 ∈ V → (𝑋 / ∼ ) ∈
V) |
94 | | isxmet 23477 |
. . 3
⊢ ((𝑋 / ∼ ) ∈ V →
((pstoMet‘𝐷) ∈
(∞Met‘(𝑋
/ ∼ )) ↔
((pstoMet‘𝐷):((𝑋 / ∼ ) × (𝑋 / ∼
))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / ∼ )∀𝑦 ∈ (𝑋 / ∼ )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))))) |
95 | 92, 93, 94 | 3syl 18 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) ∈
(∞Met‘(𝑋
/ ∼ )) ↔
((pstoMet‘𝐷):((𝑋 / ∼ ) × (𝑋 / ∼
))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / ∼ )∀𝑦 ∈ (𝑋 / ∼ )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / ∼ )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))))) |
96 | 33, 91, 95 | mpbir2and 710 |
1
⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈
(∞Met‘(𝑋
/ ∼
))) |