Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmxmet Structured version   Visualization version   GIF version

Theorem pstmxmet 31847
Description: The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 = (~Met𝐷)
Assertion
Ref Expression
pstmxmet (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )))

Proof of Theorem pstmxmet
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
2 vex 3436 . . . . . . 7 𝑥 ∈ V
3 vex 3436 . . . . . . 7 𝑦 ∈ V
42, 3ab2rexex 7822 . . . . . 6 {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V
54uniex 7594 . . . . 5 {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V
61, 5fnmpoi 7910 . . . 4 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ) × (𝑋 / ))
7 pstmval.1 . . . . . 6 = (~Met𝐷)
87pstmval 31845 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}))
98fneq1d 6526 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )) ↔ (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ) × (𝑋 / ))))
106, 9mpbiri 257 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )))
11 simpllr 773 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑥 = [𝑎] )
12 simpr 485 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑦 = [𝑏] )
1311, 12oveq12d 7293 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] (pstoMet‘𝐷)[𝑏] ))
14 simp-5l 782 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝐷 ∈ (PsMet‘𝑋))
15 simp-4r 781 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑎𝑋)
16 simplr 766 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑏𝑋)
177pstmfval 31846 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
1814, 15, 16, 17syl3anc 1370 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
1913, 18eqtrd 2778 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏))
20 psmetf 23459 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2114, 20syl 17 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2221, 15, 16fovrnd 7444 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑎𝐷𝑏) ∈ ℝ*)
2319, 22eqeltrd 2839 . . . . . 6 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
24 elqsi 8559 . . . . . . . 8 (𝑦 ∈ (𝑋 / ) → ∃𝑏𝑋 𝑦 = [𝑏] )
2524ad2antll 726 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∃𝑏𝑋 𝑦 = [𝑏] )
2625ad2antrr 723 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ∃𝑏𝑋 𝑦 = [𝑏] )
2723, 26r19.29a 3218 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
28 elqsi 8559 . . . . . 6 (𝑥 ∈ (𝑋 / ) → ∃𝑎𝑋 𝑥 = [𝑎] )
2928ad2antrl 725 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∃𝑎𝑋 𝑥 = [𝑎] )
3027, 29r19.29a 3218 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
3130ralrimivva 3123 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
32 ffnov 7401 . . 3 ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ↔ ((pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )) ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*))
3310, 31, 32sylanbrc 583 . 2 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ*)
34173expa 1117 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
3534eqeq1d 2740 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ (𝑎𝐷𝑏) = 0))
367breqi 5080 . . . . . . . . . . . 12 (𝑎 𝑏𝑎(~Met𝐷)𝑏)
37 metidv 31842 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(~Met𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0))
3837anassrs 468 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎(~Met𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0))
3936, 38syl5bb 283 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎 𝑏 ↔ (𝑎𝐷𝑏) = 0))
40 metider 31844 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)
4140ad2antrr 723 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (~Met𝐷) Er 𝑋)
42 ereq1 8505 . . . . . . . . . . . . . 14 ( = (~Met𝐷) → ( Er 𝑋 ↔ (~Met𝐷) Er 𝑋))
437, 42ax-mp 5 . . . . . . . . . . . . 13 ( Er 𝑋 ↔ (~Met𝐷) Er 𝑋)
4441, 43sylibr 233 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → Er 𝑋)
45 simplr 766 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → 𝑎𝑋)
4644, 45erth 8547 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎 𝑏 ↔ [𝑎] = [𝑏] ))
4735, 39, 463bitr2d 307 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
4847adantllr 716 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
4948adantlr 712 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
5049adantr 481 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
5113eqeq1d 2740 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ ([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0))
5211, 12eqeq12d 2754 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥 = 𝑦 ↔ [𝑎] = [𝑏] ))
5350, 51, 523bitr4d 311 . . . . . 6 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
5453, 26r19.29a 3218 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
5554, 29r19.29a 3218 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
56 simp-6l 784 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝐷 ∈ (PsMet‘𝑋))
57 simplr 766 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑐𝑋)
58 simp-6r 785 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑎𝑋)
59 simp-4r 781 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑏𝑋)
60 psmettri2 23462 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
6156, 57, 58, 59, 60syl13anc 1371 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
62 simp-5r 783 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑥 = [𝑎] )
63 simpllr 773 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑦 = [𝑏] )
6462, 63oveq12d 7293 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] (pstoMet‘𝐷)[𝑏] ))
6556, 58, 59, 17syl3anc 1370 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
6664, 65eqtrd 2778 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏))
67 simpr 485 . . . . . . . . . . . . . . . 16 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑧 = [𝑐] )
6867, 62oveq12d 7293 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑥) = ([𝑐] (pstoMet‘𝐷)[𝑎] ))
697pstmfval 31846 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐𝑋𝑎𝑋) → ([𝑐] (pstoMet‘𝐷)[𝑎] ) = (𝑐𝐷𝑎))
7056, 57, 58, 69syl3anc 1370 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑐] (pstoMet‘𝐷)[𝑎] ) = (𝑐𝐷𝑎))
7168, 70eqtrd 2778 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑥) = (𝑐𝐷𝑎))
7267, 63oveq12d 7293 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑦) = ([𝑐] (pstoMet‘𝐷)[𝑏] ))
737pstmfval 31846 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐𝑋𝑏𝑋) → ([𝑐] (pstoMet‘𝐷)[𝑏] ) = (𝑐𝐷𝑏))
7456, 57, 59, 73syl3anc 1370 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑐] (pstoMet‘𝐷)[𝑏] ) = (𝑐𝐷𝑏))
7572, 74eqtrd 2778 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑦) = (𝑐𝐷𝑏))
7671, 75oveq12d 7293 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
7761, 66, 763brtr4d 5106 . . . . . . . . . . . 12 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
7877adantl6r 761 . . . . . . . . . . 11 ((((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
79 elqsi 8559 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 / ) → ∃𝑐𝑋 𝑧 = [𝑐] )
8079ad5antlr 732 . . . . . . . . . . 11 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ∃𝑐𝑋 𝑧 = [𝑐] )
8178, 80r19.29a 3218 . . . . . . . . . 10 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8281adantl5r 760 . . . . . . . . 9 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8324ad4antlr 730 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ∃𝑏𝑋 𝑦 = [𝑏] )
8482, 83r19.29a 3218 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8584adantl4r 752 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8628ad3antlr 728 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) → ∃𝑎𝑋 𝑥 = [𝑎] )
8785, 86r19.29a 3218 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8887ralrimiva 3103 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) → ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8988anasss 467 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
9055, 89jca 512 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → (((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))
9190ralrimivva 3123 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))
92 elfvex 6807 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
93 qsexg 8564 . . 3 (𝑋 ∈ V → (𝑋 / ) ∈ V)
94 isxmet 23477 . . 3 ((𝑋 / ) ∈ V → ((pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )) ↔ ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))))
9592, 93, 943syl 18 . 2 (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )) ↔ ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))))
9633, 91, 95mpbir2and 710 1 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3432   cuni 4839   class class class wbr 5074   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277   Er wer 8495  [cec 8496   / cqs 8497  0cc0 10871  *cxr 11008  cle 11010   +𝑒 cxad 12846  PsMetcpsmet 20581  ∞Metcxmet 20582  ~Metcmetid 31836  pstoMetcpstm 31837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-psmet 20589  df-xmet 20590  df-metid 31838  df-pstm 31839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator