Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmxmet Structured version   Visualization version   GIF version

Theorem pstmxmet 31749
Description: The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 = (~Met𝐷)
Assertion
Ref Expression
pstmxmet (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )))

Proof of Theorem pstmxmet
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
2 vex 3426 . . . . . . 7 𝑥 ∈ V
3 vex 3426 . . . . . . 7 𝑦 ∈ V
42, 3ab2rexex 7795 . . . . . 6 {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V
54uniex 7572 . . . . 5 {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V
61, 5fnmpoi 7883 . . . 4 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ) × (𝑋 / ))
7 pstmval.1 . . . . . 6 = (~Met𝐷)
87pstmval 31747 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}))
98fneq1d 6510 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )) ↔ (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ) × (𝑋 / ))))
106, 9mpbiri 257 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )))
11 simpllr 772 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑥 = [𝑎] )
12 simpr 484 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑦 = [𝑏] )
1311, 12oveq12d 7273 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] (pstoMet‘𝐷)[𝑏] ))
14 simp-5l 781 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝐷 ∈ (PsMet‘𝑋))
15 simp-4r 780 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑎𝑋)
16 simplr 765 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑏𝑋)
177pstmfval 31748 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
1814, 15, 16, 17syl3anc 1369 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
1913, 18eqtrd 2778 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏))
20 psmetf 23367 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2114, 20syl 17 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2221, 15, 16fovrnd 7422 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑎𝐷𝑏) ∈ ℝ*)
2319, 22eqeltrd 2839 . . . . . 6 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
24 elqsi 8517 . . . . . . . 8 (𝑦 ∈ (𝑋 / ) → ∃𝑏𝑋 𝑦 = [𝑏] )
2524ad2antll 725 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∃𝑏𝑋 𝑦 = [𝑏] )
2625ad2antrr 722 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ∃𝑏𝑋 𝑦 = [𝑏] )
2723, 26r19.29a 3217 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
28 elqsi 8517 . . . . . 6 (𝑥 ∈ (𝑋 / ) → ∃𝑎𝑋 𝑥 = [𝑎] )
2928ad2antrl 724 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∃𝑎𝑋 𝑥 = [𝑎] )
3027, 29r19.29a 3217 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
3130ralrimivva 3114 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
32 ffnov 7379 . . 3 ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ↔ ((pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )) ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*))
3310, 31, 32sylanbrc 582 . 2 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ*)
34173expa 1116 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
3534eqeq1d 2740 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ (𝑎𝐷𝑏) = 0))
367breqi 5076 . . . . . . . . . . . 12 (𝑎 𝑏𝑎(~Met𝐷)𝑏)
37 metidv 31744 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(~Met𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0))
3837anassrs 467 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎(~Met𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0))
3936, 38syl5bb 282 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎 𝑏 ↔ (𝑎𝐷𝑏) = 0))
40 metider 31746 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)
4140ad2antrr 722 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (~Met𝐷) Er 𝑋)
42 ereq1 8463 . . . . . . . . . . . . . 14 ( = (~Met𝐷) → ( Er 𝑋 ↔ (~Met𝐷) Er 𝑋))
437, 42ax-mp 5 . . . . . . . . . . . . 13 ( Er 𝑋 ↔ (~Met𝐷) Er 𝑋)
4441, 43sylibr 233 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → Er 𝑋)
45 simplr 765 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → 𝑎𝑋)
4644, 45erth 8505 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎 𝑏 ↔ [𝑎] = [𝑏] ))
4735, 39, 463bitr2d 306 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
4847adantllr 715 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
4948adantlr 711 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
5049adantr 480 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
5113eqeq1d 2740 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ ([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0))
5211, 12eqeq12d 2754 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥 = 𝑦 ↔ [𝑎] = [𝑏] ))
5350, 51, 523bitr4d 310 . . . . . 6 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
5453, 26r19.29a 3217 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
5554, 29r19.29a 3217 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
56 simp-6l 783 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝐷 ∈ (PsMet‘𝑋))
57 simplr 765 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑐𝑋)
58 simp-6r 784 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑎𝑋)
59 simp-4r 780 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑏𝑋)
60 psmettri2 23370 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
6156, 57, 58, 59, 60syl13anc 1370 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
62 simp-5r 782 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑥 = [𝑎] )
63 simpllr 772 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑦 = [𝑏] )
6462, 63oveq12d 7273 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] (pstoMet‘𝐷)[𝑏] ))
6556, 58, 59, 17syl3anc 1369 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
6664, 65eqtrd 2778 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏))
67 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑧 = [𝑐] )
6867, 62oveq12d 7273 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑥) = ([𝑐] (pstoMet‘𝐷)[𝑎] ))
697pstmfval 31748 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐𝑋𝑎𝑋) → ([𝑐] (pstoMet‘𝐷)[𝑎] ) = (𝑐𝐷𝑎))
7056, 57, 58, 69syl3anc 1369 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑐] (pstoMet‘𝐷)[𝑎] ) = (𝑐𝐷𝑎))
7168, 70eqtrd 2778 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑥) = (𝑐𝐷𝑎))
7267, 63oveq12d 7273 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑦) = ([𝑐] (pstoMet‘𝐷)[𝑏] ))
737pstmfval 31748 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐𝑋𝑏𝑋) → ([𝑐] (pstoMet‘𝐷)[𝑏] ) = (𝑐𝐷𝑏))
7456, 57, 59, 73syl3anc 1369 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑐] (pstoMet‘𝐷)[𝑏] ) = (𝑐𝐷𝑏))
7572, 74eqtrd 2778 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑦) = (𝑐𝐷𝑏))
7671, 75oveq12d 7273 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
7761, 66, 763brtr4d 5102 . . . . . . . . . . . 12 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
7877adantl6r 760 . . . . . . . . . . 11 ((((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
79 elqsi 8517 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 / ) → ∃𝑐𝑋 𝑧 = [𝑐] )
8079ad5antlr 731 . . . . . . . . . . 11 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ∃𝑐𝑋 𝑧 = [𝑐] )
8178, 80r19.29a 3217 . . . . . . . . . 10 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8281adantl5r 759 . . . . . . . . 9 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8324ad4antlr 729 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ∃𝑏𝑋 𝑦 = [𝑏] )
8482, 83r19.29a 3217 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8584adantl4r 751 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8628ad3antlr 727 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) → ∃𝑎𝑋 𝑥 = [𝑎] )
8785, 86r19.29a 3217 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8887ralrimiva 3107 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) → ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8988anasss 466 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
9055, 89jca 511 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → (((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))
9190ralrimivva 3114 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))
92 elfvex 6789 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
93 qsexg 8522 . . 3 (𝑋 ∈ V → (𝑋 / ) ∈ V)
94 isxmet 23385 . . 3 ((𝑋 / ) ∈ V → ((pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )) ↔ ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))))
9592, 93, 943syl 18 . 2 (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )) ↔ ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))))
9633, 91, 95mpbir2and 709 1 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422   cuni 4836   class class class wbr 5070   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257   Er wer 8453  [cec 8454   / cqs 8455  0cc0 10802  *cxr 10939  cle 10941   +𝑒 cxad 12775  PsMetcpsmet 20494  ∞Metcxmet 20495  ~Metcmetid 31738  pstoMetcpstm 31739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-psmet 20502  df-xmet 20503  df-metid 31740  df-pstm 31741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator