Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmxmet Structured version   Visualization version   GIF version

Theorem pstmxmet 31250
Description: The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 = (~Met𝐷)
Assertion
Ref Expression
pstmxmet (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )))

Proof of Theorem pstmxmet
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . 5 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
2 vex 3444 . . . . . . 7 𝑥 ∈ V
3 vex 3444 . . . . . . 7 𝑦 ∈ V
42, 3ab2rexex 7662 . . . . . 6 {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V
54uniex 7447 . . . . 5 {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} ∈ V
61, 5fnmpoi 7750 . . . 4 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ) × (𝑋 / ))
7 pstmval.1 . . . . . 6 = (~Met𝐷)
87pstmval 31248 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}))
98fneq1d 6416 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )) ↔ (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) Fn ((𝑋 / ) × (𝑋 / ))))
106, 9mpbiri 261 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )))
11 simpllr 775 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑥 = [𝑎] )
12 simpr 488 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑦 = [𝑏] )
1311, 12oveq12d 7153 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] (pstoMet‘𝐷)[𝑏] ))
14 simp-5l 784 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝐷 ∈ (PsMet‘𝑋))
15 simp-4r 783 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑎𝑋)
16 simplr 768 . . . . . . . . 9 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝑏𝑋)
177pstmfval 31249 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
1814, 15, 16, 17syl3anc 1368 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
1913, 18eqtrd 2833 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏))
20 psmetf 22913 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2114, 20syl 17 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2221, 15, 16fovrnd 7300 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑎𝐷𝑏) ∈ ℝ*)
2319, 22eqeltrd 2890 . . . . . 6 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
24 elqsi 8333 . . . . . . . 8 (𝑦 ∈ (𝑋 / ) → ∃𝑏𝑋 𝑦 = [𝑏] )
2524ad2antll 728 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∃𝑏𝑋 𝑦 = [𝑏] )
2625ad2antrr 725 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ∃𝑏𝑋 𝑦 = [𝑏] )
2723, 26r19.29a 3248 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
28 elqsi 8333 . . . . . 6 (𝑥 ∈ (𝑋 / ) → ∃𝑎𝑋 𝑥 = [𝑎] )
2928ad2antrl 727 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∃𝑎𝑋 𝑥 = [𝑎] )
3027, 29r19.29a 3248 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → (𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
3130ralrimivva 3156 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*)
32 ffnov 7257 . . 3 ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ↔ ((pstoMet‘𝐷) Fn ((𝑋 / ) × (𝑋 / )) ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ∈ ℝ*))
3310, 31, 32sylanbrc 586 . 2 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ*)
34173expa 1115 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
3534eqeq1d 2800 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ (𝑎𝐷𝑏) = 0))
367breqi 5036 . . . . . . . . . . . 12 (𝑎 𝑏𝑎(~Met𝐷)𝑏)
37 metidv 31245 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(~Met𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0))
3837anassrs 471 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎(~Met𝐷)𝑏 ↔ (𝑎𝐷𝑏) = 0))
3936, 38syl5bb 286 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎 𝑏 ↔ (𝑎𝐷𝑏) = 0))
40 metider 31247 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) Er 𝑋)
4140ad2antrr 725 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (~Met𝐷) Er 𝑋)
42 ereq1 8279 . . . . . . . . . . . . . 14 ( = (~Met𝐷) → ( Er 𝑋 ↔ (~Met𝐷) Er 𝑋))
437, 42ax-mp 5 . . . . . . . . . . . . 13 ( Er 𝑋 ↔ (~Met𝐷) Er 𝑋)
4441, 43sylibr 237 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → Er 𝑋)
45 simplr 768 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → 𝑎𝑋)
4644, 45erth 8321 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (𝑎 𝑏 ↔ [𝑎] = [𝑏] ))
4735, 39, 463bitr2d 310 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
4847adantllr 718 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
4948adantlr 714 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
5049adantr 484 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0 ↔ [𝑎] = [𝑏] ))
5113eqeq1d 2800 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ ([𝑎] (pstoMet‘𝐷)[𝑏] ) = 0))
5211, 12eqeq12d 2814 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥 = 𝑦 ↔ [𝑎] = [𝑏] ))
5350, 51, 523bitr4d 314 . . . . . 6 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
5453, 26r19.29a 3248 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
5554, 29r19.29a 3248 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦))
56 simp-6l 786 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝐷 ∈ (PsMet‘𝑋))
57 simplr 768 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑐𝑋)
58 simp-6r 787 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑎𝑋)
59 simp-4r 783 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑏𝑋)
60 psmettri2 22916 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
6156, 57, 58, 59, 60syl13anc 1369 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
62 simp-5r 785 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑥 = [𝑎] )
63 simpllr 775 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑦 = [𝑏] )
6462, 63oveq12d 7153 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) = ([𝑎] (pstoMet‘𝐷)[𝑏] ))
6556, 58, 59, 17syl3anc 1368 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑎] (pstoMet‘𝐷)[𝑏] ) = (𝑎𝐷𝑏))
6664, 65eqtrd 2833 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) = (𝑎𝐷𝑏))
67 simpr 488 . . . . . . . . . . . . . . . 16 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → 𝑧 = [𝑐] )
6867, 62oveq12d 7153 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑥) = ([𝑐] (pstoMet‘𝐷)[𝑎] ))
697pstmfval 31249 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐𝑋𝑎𝑋) → ([𝑐] (pstoMet‘𝐷)[𝑎] ) = (𝑐𝐷𝑎))
7056, 57, 58, 69syl3anc 1368 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑐] (pstoMet‘𝐷)[𝑎] ) = (𝑐𝐷𝑎))
7168, 70eqtrd 2833 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑥) = (𝑐𝐷𝑎))
7267, 63oveq12d 7153 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑦) = ([𝑐] (pstoMet‘𝐷)[𝑏] ))
737pstmfval 31249 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑐𝑋𝑏𝑋) → ([𝑐] (pstoMet‘𝐷)[𝑏] ) = (𝑐𝐷𝑏))
7456, 57, 59, 73syl3anc 1368 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ([𝑐] (pstoMet‘𝐷)[𝑏] ) = (𝑐𝐷𝑏))
7572, 74eqtrd 2833 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑧(pstoMet‘𝐷)𝑦) = (𝑐𝐷𝑏))
7671, 75oveq12d 7153 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
7761, 66, 763brtr4d 5062 . . . . . . . . . . . 12 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
7877adantl6r 763 . . . . . . . . . . 11 ((((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) ∧ 𝑐𝑋) ∧ 𝑧 = [𝑐] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
79 elqsi 8333 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 / ) → ∃𝑐𝑋 𝑧 = [𝑐] )
8079ad5antlr 734 . . . . . . . . . . 11 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → ∃𝑐𝑋 𝑧 = [𝑐] )
8178, 80r19.29a 3248 . . . . . . . . . 10 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8281adantl5r 762 . . . . . . . . 9 (((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) ∧ 𝑏𝑋) ∧ 𝑦 = [𝑏] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8324ad4antlr 732 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → ∃𝑏𝑋 𝑦 = [𝑏] )
8482, 83r19.29a 3248 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8584adantl4r 754 . . . . . . 7 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) ∧ 𝑎𝑋) ∧ 𝑥 = [𝑎] ) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8628ad3antlr 730 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) → ∃𝑎𝑋 𝑥 = [𝑎] )
8785, 86r19.29a 3248 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) ∧ 𝑧 ∈ (𝑋 / )) → (𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8887ralrimiva 3149 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ (𝑋 / )) ∧ 𝑦 ∈ (𝑋 / )) → ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
8988anasss 470 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦)))
9055, 89jca 515 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ (𝑋 / ) ∧ 𝑦 ∈ (𝑋 / ))) → (((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))
9190ralrimivva 3156 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))
92 elfvex 6678 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
93 qsexg 8338 . . 3 (𝑋 ∈ V → (𝑋 / ) ∈ V)
94 isxmet 22931 . . 3 ((𝑋 / ) ∈ V → ((pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )) ↔ ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))))
9592, 93, 943syl 18 . 2 (𝐷 ∈ (PsMet‘𝑋) → ((pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )) ↔ ((pstoMet‘𝐷):((𝑋 / ) × (𝑋 / ))⟶ℝ* ∧ ∀𝑥 ∈ (𝑋 / )∀𝑦 ∈ (𝑋 / )(((𝑥(pstoMet‘𝐷)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ (𝑋 / )(𝑥(pstoMet‘𝐷)𝑦) ≤ ((𝑧(pstoMet‘𝐷)𝑥) +𝑒 (𝑧(pstoMet‘𝐷)𝑦))))))
9633, 91, 95mpbir2and 712 1 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441   cuni 4800   class class class wbr 5030   × cxp 5517   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137   Er wer 8269  [cec 8270   / cqs 8271  0cc0 10526  *cxr 10663  cle 10665   +𝑒 cxad 12493  PsMetcpsmet 20075  ∞Metcxmet 20076  ~Metcmetid 31239  pstoMetcpstm 31240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-psmet 20083  df-xmet 20084  df-metid 31241  df-pstm 31242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator