Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmxmet Structured version   Visualization version   GIF version

Theorem pstmxmet 33332
Description: The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 ∼ = (~Metβ€˜π·)
Assertion
Ref Expression
pstmxmet (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (pstoMetβ€˜π·) ∈ (∞Metβ€˜(𝑋 / ∼ )))

Proof of Theorem pstmxmet
Dummy variables π‘Ž 𝑏 𝑐 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . . . 5 (π‘₯ ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘Ž ∈ π‘₯ βˆƒπ‘ ∈ 𝑦 𝑧 = (π‘Žπ·π‘)}) = (π‘₯ ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘Ž ∈ π‘₯ βˆƒπ‘ ∈ 𝑦 𝑧 = (π‘Žπ·π‘)})
2 vex 3470 . . . . . . 7 π‘₯ ∈ V
3 vex 3470 . . . . . . 7 𝑦 ∈ V
42, 3ab2rexex 7959 . . . . . 6 {𝑧 ∣ βˆƒπ‘Ž ∈ π‘₯ βˆƒπ‘ ∈ 𝑦 𝑧 = (π‘Žπ·π‘)} ∈ V
54uniex 7724 . . . . 5 βˆͺ {𝑧 ∣ βˆƒπ‘Ž ∈ π‘₯ βˆƒπ‘ ∈ 𝑦 𝑧 = (π‘Žπ·π‘)} ∈ V
61, 5fnmpoi 8049 . . . 4 (π‘₯ ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘Ž ∈ π‘₯ βˆƒπ‘ ∈ 𝑦 𝑧 = (π‘Žπ·π‘)}) Fn ((𝑋 / ∼ ) Γ— (𝑋 / ∼ ))
7 pstmval.1 . . . . . 6 ∼ = (~Metβ€˜π·)
87pstmval 33330 . . . . 5 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (pstoMetβ€˜π·) = (π‘₯ ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘Ž ∈ π‘₯ βˆƒπ‘ ∈ 𝑦 𝑧 = (π‘Žπ·π‘)}))
98fneq1d 6632 . . . 4 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ ((pstoMetβ€˜π·) Fn ((𝑋 / ∼ ) Γ— (𝑋 / ∼ )) ↔ (π‘₯ ∈ (𝑋 / ∼ ), 𝑦 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘Ž ∈ π‘₯ βˆƒπ‘ ∈ 𝑦 𝑧 = (π‘Žπ·π‘)}) Fn ((𝑋 / ∼ ) Γ— (𝑋 / ∼ ))))
106, 9mpbiri 258 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (pstoMetβ€˜π·) Fn ((𝑋 / ∼ ) Γ— (𝑋 / ∼ )))
11 simpllr 773 . . . . . . . . 9 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ π‘₯ = [π‘Ž] ∼ )
12 simpr 484 . . . . . . . . 9 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ 𝑦 = [𝑏] ∼ )
1311, 12oveq12d 7419 . . . . . . . 8 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) = ([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ))
14 simp-5l 782 . . . . . . . . 9 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))
15 simp-4r 781 . . . . . . . . 9 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ π‘Ž ∈ 𝑋)
16 simplr 766 . . . . . . . . 9 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ 𝑏 ∈ 𝑋)
177pstmfval 33331 . . . . . . . . 9 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) β†’ ([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = (π‘Žπ·π‘))
1814, 15, 16, 17syl3anc 1368 . . . . . . . 8 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ ([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = (π‘Žπ·π‘))
1913, 18eqtrd 2764 . . . . . . 7 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) = (π‘Žπ·π‘))
20 psmetf 24122 . . . . . . . . 9 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
2114, 20syl 17 . . . . . . . 8 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
2221, 15, 16fovcdmd 7572 . . . . . . 7 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (π‘Žπ·π‘) ∈ ℝ*)
2319, 22eqeltrd 2825 . . . . . 6 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ∈ ℝ*)
24 elqsi 8759 . . . . . . . 8 (𝑦 ∈ (𝑋 / ∼ ) β†’ βˆƒπ‘ ∈ 𝑋 𝑦 = [𝑏] ∼ )
2524ad2antll 726 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) β†’ βˆƒπ‘ ∈ 𝑋 𝑦 = [𝑏] ∼ )
2625ad2antrr 723 . . . . . 6 ((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) β†’ βˆƒπ‘ ∈ 𝑋 𝑦 = [𝑏] ∼ )
2723, 26r19.29a 3154 . . . . 5 ((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ∈ ℝ*)
28 elqsi 8759 . . . . . 6 (π‘₯ ∈ (𝑋 / ∼ ) β†’ βˆƒπ‘Ž ∈ 𝑋 π‘₯ = [π‘Ž] ∼ )
2928ad2antrl 725 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) β†’ βˆƒπ‘Ž ∈ 𝑋 π‘₯ = [π‘Ž] ∼ )
3027, 29r19.29a 3154 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ∈ ℝ*)
3130ralrimivva 3192 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ (𝑋 / ∼ )βˆ€π‘¦ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ∈ ℝ*)
32 ffnov 7527 . . 3 ((pstoMetβ€˜π·):((𝑋 / ∼ ) Γ— (𝑋 / ∼ ))βŸΆβ„* ↔ ((pstoMetβ€˜π·) Fn ((𝑋 / ∼ ) Γ— (𝑋 / ∼ )) ∧ βˆ€π‘₯ ∈ (𝑋 / ∼ )βˆ€π‘¦ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ∈ ℝ*))
3310, 31, 32sylanbrc 582 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (pstoMetβ€˜π·):((𝑋 / ∼ ) Γ— (𝑋 / ∼ ))βŸΆβ„*)
34173expa 1115 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ ([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = (π‘Žπ·π‘))
3534eqeq1d 2726 . . . . . . . . . . 11 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ (([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = 0 ↔ (π‘Žπ·π‘) = 0))
367breqi 5144 . . . . . . . . . . . 12 (π‘Ž ∼ 𝑏 ↔ π‘Ž(~Metβ€˜π·)𝑏)
37 metidv 33327 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ (π‘Ž(~Metβ€˜π·)𝑏 ↔ (π‘Žπ·π‘) = 0))
3837anassrs 467 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ (π‘Ž(~Metβ€˜π·)𝑏 ↔ (π‘Žπ·π‘) = 0))
3936, 38bitrid 283 . . . . . . . . . . 11 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ (π‘Ž ∼ 𝑏 ↔ (π‘Žπ·π‘) = 0))
40 metider 33329 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (~Metβ€˜π·) Er 𝑋)
4140ad2antrr 723 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ (~Metβ€˜π·) Er 𝑋)
42 ereq1 8705 . . . . . . . . . . . . . 14 ( ∼ = (~Metβ€˜π·) β†’ ( ∼ Er 𝑋 ↔ (~Metβ€˜π·) Er 𝑋))
437, 42ax-mp 5 . . . . . . . . . . . . 13 ( ∼ Er 𝑋 ↔ (~Metβ€˜π·) Er 𝑋)
4441, 43sylibr 233 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ ∼ Er 𝑋)
45 simplr 766 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ π‘Ž ∈ 𝑋)
4644, 45erth 8747 . . . . . . . . . . 11 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ (π‘Ž ∼ 𝑏 ↔ [π‘Ž] ∼ = [𝑏] ∼ ))
4735, 39, 463bitr2d 307 . . . . . . . . . 10 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ (([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = 0 ↔ [π‘Ž] ∼ = [𝑏] ∼ ))
4847adantllr 716 . . . . . . . . 9 ((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) β†’ (([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = 0 ↔ [π‘Ž] ∼ = [𝑏] ∼ ))
4948adantlr 712 . . . . . . . 8 (((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) β†’ (([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = 0 ↔ [π‘Ž] ∼ = [𝑏] ∼ ))
5049adantr 480 . . . . . . 7 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = 0 ↔ [π‘Ž] ∼ = [𝑏] ∼ ))
5113eqeq1d 2726 . . . . . . 7 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ ((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ ([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = 0))
5211, 12eqeq12d 2740 . . . . . . 7 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (π‘₯ = 𝑦 ↔ [π‘Ž] ∼ = [𝑏] ∼ ))
5350, 51, 523bitr4d 311 . . . . . 6 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ ((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ π‘₯ = 𝑦))
5453, 26r19.29a 3154 . . . . 5 ((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) β†’ ((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ π‘₯ = 𝑦))
5554, 29r19.29a 3154 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) β†’ ((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ π‘₯ = 𝑦))
56 simp-6l 784 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))
57 simplr 766 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ 𝑐 ∈ 𝑋)
58 simp-6r 785 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ π‘Ž ∈ 𝑋)
59 simp-4r 781 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ 𝑏 ∈ 𝑋)
60 psmettri2 24125 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝑐 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ (π‘Žπ·π‘) ≀ ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏)))
6156, 57, 58, 59, 60syl13anc 1369 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (π‘Žπ·π‘) ≀ ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏)))
62 simp-5r 783 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ π‘₯ = [π‘Ž] ∼ )
63 simpllr 773 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ 𝑦 = [𝑏] ∼ )
6462, 63oveq12d 7419 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) = ([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ))
6556, 58, 59, 17syl3anc 1368 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ ([π‘Ž] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = (π‘Žπ·π‘))
6664, 65eqtrd 2764 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) = (π‘Žπ·π‘))
67 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ 𝑧 = [𝑐] ∼ )
6867, 62oveq12d 7419 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (𝑧(pstoMetβ€˜π·)π‘₯) = ([𝑐] ∼ (pstoMetβ€˜π·)[π‘Ž] ∼ ))
697pstmfval 33331 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑐 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋) β†’ ([𝑐] ∼ (pstoMetβ€˜π·)[π‘Ž] ∼ ) = (π‘π·π‘Ž))
7056, 57, 58, 69syl3anc 1368 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ ([𝑐] ∼ (pstoMetβ€˜π·)[π‘Ž] ∼ ) = (π‘π·π‘Ž))
7168, 70eqtrd 2764 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (𝑧(pstoMetβ€˜π·)π‘₯) = (π‘π·π‘Ž))
7267, 63oveq12d 7419 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (𝑧(pstoMetβ€˜π·)𝑦) = ([𝑐] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ))
737pstmfval 33331 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) β†’ ([𝑐] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = (𝑐𝐷𝑏))
7456, 57, 59, 73syl3anc 1368 . . . . . . . . . . . . . . 15 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ ([𝑐] ∼ (pstoMetβ€˜π·)[𝑏] ∼ ) = (𝑐𝐷𝑏))
7572, 74eqtrd 2764 . . . . . . . . . . . . . 14 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (𝑧(pstoMetβ€˜π·)𝑦) = (𝑐𝐷𝑏))
7671, 75oveq12d 7419 . . . . . . . . . . . . 13 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)) = ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏)))
7761, 66, 763brtr4d 5170 . . . . . . . . . . . 12 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
7877adantl6r 761 . . . . . . . . . . 11 ((((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) ∧ 𝑐 ∈ 𝑋) ∧ 𝑧 = [𝑐] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
79 elqsi 8759 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 / ∼ ) β†’ βˆƒπ‘ ∈ 𝑋 𝑧 = [𝑐] ∼ )
8079ad5antlr 732 . . . . . . . . . . 11 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ βˆƒπ‘ ∈ 𝑋 𝑧 = [𝑐] ∼ )
8178, 80r19.29a 3154 . . . . . . . . . 10 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
8281adantl5r 760 . . . . . . . . 9 (((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) ∧ 𝑏 ∈ 𝑋) ∧ 𝑦 = [𝑏] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
8324ad4antlr 730 . . . . . . . . 9 (((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) β†’ βˆƒπ‘ ∈ 𝑋 𝑦 = [𝑏] ∼ )
8482, 83r19.29a 3154 . . . . . . . 8 (((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
8584adantl4r 752 . . . . . . 7 ((((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) ∧ π‘Ž ∈ 𝑋) ∧ π‘₯ = [π‘Ž] ∼ ) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
8628ad3antlr 728 . . . . . . 7 ((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) β†’ βˆƒπ‘Ž ∈ 𝑋 π‘₯ = [π‘Ž] ∼ )
8785, 86r19.29a 3154 . . . . . 6 ((((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) ∧ 𝑧 ∈ (𝑋 / ∼ )) β†’ (π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
8887ralrimiva 3138 . . . . 5 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ (𝑋 / ∼ )) ∧ 𝑦 ∈ (𝑋 / ∼ )) β†’ βˆ€π‘§ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
8988anasss 466 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) β†’ βˆ€π‘§ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦)))
9055, 89jca 511 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (π‘₯ ∈ (𝑋 / ∼ ) ∧ 𝑦 ∈ (𝑋 / ∼ ))) β†’ (((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦))))
9190ralrimivva 3192 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ (𝑋 / ∼ )βˆ€π‘¦ ∈ (𝑋 / ∼ )(((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦))))
92 elfvex 6919 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝑋 ∈ V)
93 qsexg 8764 . . 3 (𝑋 ∈ V β†’ (𝑋 / ∼ ) ∈ V)
94 isxmet 24140 . . 3 ((𝑋 / ∼ ) ∈ V β†’ ((pstoMetβ€˜π·) ∈ (∞Metβ€˜(𝑋 / ∼ )) ↔ ((pstoMetβ€˜π·):((𝑋 / ∼ ) Γ— (𝑋 / ∼ ))βŸΆβ„* ∧ βˆ€π‘₯ ∈ (𝑋 / ∼ )βˆ€π‘¦ ∈ (𝑋 / ∼ )(((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦))))))
9592, 93, 943syl 18 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ ((pstoMetβ€˜π·) ∈ (∞Metβ€˜(𝑋 / ∼ )) ↔ ((pstoMetβ€˜π·):((𝑋 / ∼ ) Γ— (𝑋 / ∼ ))βŸΆβ„* ∧ βˆ€π‘₯ ∈ (𝑋 / ∼ )βˆ€π‘¦ ∈ (𝑋 / ∼ )(((π‘₯(pstoMetβ€˜π·)𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ (𝑋 / ∼ )(π‘₯(pstoMetβ€˜π·)𝑦) ≀ ((𝑧(pstoMetβ€˜π·)π‘₯) +𝑒 (𝑧(pstoMetβ€˜π·)𝑦))))))
9633, 91, 95mpbir2and 710 1 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (pstoMetβ€˜π·) ∈ (∞Metβ€˜(𝑋 / ∼ )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {cab 2701  βˆ€wral 3053  βˆƒwrex 3062  Vcvv 3466  βˆͺ cuni 4899   class class class wbr 5138   Γ— cxp 5664   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403   Er wer 8695  [cec 8696   / cqs 8697  0cc0 11105  β„*cxr 11243   ≀ cle 11245   +𝑒 cxad 13086  PsMetcpsmet 21207  βˆžMetcxmet 21208  ~Metcmetid 33321  pstoMetcpstm 33322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8698  df-ec 8700  df-qs 8704  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-psmet 21215  df-xmet 21216  df-metid 33323  df-pstm 33324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator