Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.33 | Structured version Visualization version GIF version |
Description: Theorem *3.33 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm3.33 | ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 83 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | |
2 | 1 | imp 406 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: alsyl 1897 ucncn 23345 bnj1023 32660 bnj907 32847 2sb5ndALT 42441 |
Copyright terms: Public domain | W3C validator |