|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > adantl5r | Structured version Visualization version GIF version | ||
| Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| adantl5r.1 | ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | 
| Ref | Expression | 
|---|---|
| adantl5r | ⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | adantl5r.1 | . . . 4 ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) | 
| 3 | 2 | adantl4r 755 | . 2 ⊢ ((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → (𝜆 → 𝜅)) | 
| 4 | 3 | imp 406 | 1 ⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: adantl6r 764 2sqmo 27481 pstmxmet 33896 | 
| Copyright terms: Public domain | W3C validator |