Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax2-lem5 Structured version   Visualization version   GIF version

Theorem adh-minim-ax2-lem5 44362
Description: Fifth lemma for the derivation of ax-2 7 from adh-minim 44356 and ax-mp 5. Polish prefix notation: CpCCCqrsCCrCstCrt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax2-lem5 (𝜑 → (((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏))))

Proof of Theorem adh-minim-ax2-lem5
StepHypRef Expression
1 adh-minim-ax1-ax2-lem4 44360 . 2 (((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏)))
2 adh-minim-ax1 44361 . 2 ((((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏))) → (𝜑 → (((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏)))))
31, 2ax-mp 5 1 (𝜑 → (((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax2-lem6  44363  adh-minim-ax2c  44364
  Copyright terms: Public domain W3C validator