Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax2c Structured version   Visualization version   GIF version

Theorem adh-minim-ax2c 44364
Description: Derivation of a commuted form of ax-2 7 from adh-minim 44356 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax2c ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))

Proof of Theorem adh-minim-ax2c
StepHypRef Expression
1 adh-minim-ax2-lem5 44362 . 2 ((𝜑𝜓) → ((((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → 𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))))
2 adh-minim-ax2-lem6 44363 . . . . 5 (((((𝜎𝜌) → 𝜇) → ((𝜌 → (𝜇𝜆)) → (𝜌𝜆))) → ((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑)) → ((((𝜎𝜌) → 𝜇) → ((𝜌 → (𝜇𝜆)) → (𝜌𝜆))) → 𝜑))
3 adh-minim-ax2-lem6 44363 . . . . 5 ((((((𝜎𝜌) → 𝜇) → ((𝜌 → (𝜇𝜆)) → (𝜌𝜆))) → ((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑)) → ((((𝜎𝜌) → 𝜇) → ((𝜌 → (𝜇𝜆)) → (𝜌𝜆))) → 𝜑)) → (((((𝜎𝜌) → 𝜇) → ((𝜌 → (𝜇𝜆)) → (𝜌𝜆))) → ((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑)) → 𝜑))
42, 3ax-mp 5 . . . 4 (((((𝜎𝜌) → 𝜇) → ((𝜌 → (𝜇𝜆)) → (𝜌𝜆))) → ((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑)) → 𝜑)
5 adh-minim-ax1-ax2-lem4 44360 . . . 4 ((((((𝜎𝜌) → 𝜇) → ((𝜌 → (𝜇𝜆)) → (𝜌𝜆))) → ((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑)) → 𝜑) → ((((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → (𝜑𝜓)) → (((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → 𝜓)))
64, 5ax-mp 5 . . 3 ((((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → (𝜑𝜓)) → (((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → 𝜓))
7 adh-minim-ax1-ax2-lem4 44360 . . 3 (((((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → (𝜑𝜓)) → (((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → 𝜓)) → (((𝜑𝜓) → ((((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → 𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))) → ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))))
86, 7ax-mp 5 . 2 (((𝜑𝜓) → ((((((𝜃𝜏) → 𝜂) → ((𝜏 → (𝜂𝜁)) → (𝜏𝜁))) → 𝜑) → 𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))) → ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))))
91, 8ax-mp 5 1 ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax2  44365
  Copyright terms: Public domain W3C validator