Proof of Theorem adh-minim-ax2c
Step | Hyp | Ref
| Expression |
1 | | adh-minim-ax2-lem5 44362 |
. 2
⊢ ((𝜑 → 𝜓) → ((((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) |
2 | | adh-minim-ax2-lem6 44363 |
. . . . 5
⊢
(((((𝜎 → 𝜌) → 𝜇) → ((𝜌 → (𝜇 → 𝜆)) → (𝜌 → 𝜆))) → ((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑)) → ((((𝜎 → 𝜌) → 𝜇) → ((𝜌 → (𝜇 → 𝜆)) → (𝜌 → 𝜆))) → 𝜑)) |
3 | | adh-minim-ax2-lem6 44363 |
. . . . 5
⊢
((((((𝜎 → 𝜌) → 𝜇) → ((𝜌 → (𝜇 → 𝜆)) → (𝜌 → 𝜆))) → ((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑)) → ((((𝜎 → 𝜌) → 𝜇) → ((𝜌 → (𝜇 → 𝜆)) → (𝜌 → 𝜆))) → 𝜑)) → (((((𝜎 → 𝜌) → 𝜇) → ((𝜌 → (𝜇 → 𝜆)) → (𝜌 → 𝜆))) → ((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑)) → 𝜑)) |
4 | 2, 3 | ax-mp 5 |
. . . 4
⊢
(((((𝜎 → 𝜌) → 𝜇) → ((𝜌 → (𝜇 → 𝜆)) → (𝜌 → 𝜆))) → ((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑)) → 𝜑) |
5 | | adh-minim-ax1-ax2-lem4 44360 |
. . . 4
⊢
((((((𝜎 → 𝜌) → 𝜇) → ((𝜌 → (𝜇 → 𝜆)) → (𝜌 → 𝜆))) → ((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑)) → 𝜑) → ((((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → (𝜑 → 𝜓)) → (((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → 𝜓))) |
6 | 4, 5 | ax-mp 5 |
. . 3
⊢
((((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → (𝜑 → 𝜓)) → (((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → 𝜓)) |
7 | | adh-minim-ax1-ax2-lem4 44360 |
. . 3
⊢
(((((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → (𝜑 → 𝜓)) → (((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → 𝜓)) → (((𝜑 → 𝜓) → ((((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))))) |
8 | 6, 7 | ax-mp 5 |
. 2
⊢ (((𝜑 → 𝜓) → ((((((𝜃 → 𝜏) → 𝜂) → ((𝜏 → (𝜂 → 𝜁)) → (𝜏 → 𝜁))) → 𝜑) → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) |
9 | 1, 8 | ax-mp 5 |
1
⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |