Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax2-lem6 Structured version   Visualization version   GIF version

Theorem adh-minim-ax2-lem6 44363
Description: Sixth lemma for the derivation of ax-2 7 from adh-minim 44356 and ax-mp 5. Polish prefix notation: CCpCCCCqrsCCrCstCrtuCpu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax2-lem6 ((𝜑 → ((((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏))) → 𝜂)) → (𝜑𝜂))

Proof of Theorem adh-minim-ax2-lem6
StepHypRef Expression
1 adh-minim-ax2-lem5 44362 . 2 ((𝜁𝜑) → (((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏))))
2 adh-minim-ax1-ax2-lem4 44360 . 2 (((𝜁𝜑) → (((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏)))) → ((𝜑 → ((((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏))) → 𝜂)) → (𝜑𝜂)))
31, 2ax-mp 5 1 ((𝜑 → ((((𝜓𝜒) → 𝜃) → ((𝜒 → (𝜃𝜏)) → (𝜒𝜏))) → 𝜂)) → (𝜑𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax2c  44364  adh-minim-ax2  44365
  Copyright terms: Public domain W3C validator