Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-imim1 Structured version   Visualization version   GIF version

Theorem adh-minimp-imim1 44374
Description: Derivation of imim1 83 ("left antimonotonicity of implication", theorem *2.06 of [WhiteheadRussell] p. 100) from adh-minimp 44368 and ax-mp 5. Polish prefix notation: CCpqCCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-imim1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem adh-minimp-imim1
StepHypRef Expression
1 adh-minimp-sylsimp 44372 . 2 ((((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜓𝜒) → (𝜑𝜒)))
2 adh-minimp-jarr-imim1-ax2c-lem1 44369 . . . 4 ((𝜑𝜓) → (((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒)))
3 adh-minimp-jarr-imim1-ax2c-lem1 44369 . . . 4 (((𝜑𝜓) → (((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒))) → (((𝜌 → (𝜑𝜓)) → ((((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜓𝜒) → (𝜑𝜒)))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))))
42, 3ax-mp 5 . . 3 (((𝜌 → (𝜑𝜓)) → ((((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜓𝜒) → (𝜑𝜒)))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
5 adh-minimp-sylsimp 44372 . . 3 ((((𝜌 → (𝜑𝜓)) → ((((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜓𝜒) → (𝜑𝜒)))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))) → (((((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜓𝜒) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))))
64, 5ax-mp 5 . 2 (((((𝜃𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜓𝜒) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
71, 6ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-ax2c  44375
  Copyright terms: Public domain W3C validator