Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0nsn2el Structured version   Visualization version   GIF version

Theorem n0nsn2el 45721
Description: If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.)
Assertion
Ref Expression
n0nsn2el ((𝐴𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem n0nsn2el
StepHypRef Expression
1 ne0i 4333 . . . . . 6 (𝐴𝐵𝐵 ≠ ∅)
2 eqsn 4831 . . . . . 6 (𝐵 ≠ ∅ → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
31, 2syl 17 . . . . 5 (𝐴𝐵 → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
43biimprd 247 . . . 4 (𝐴𝐵 → (∀𝑥𝐵 𝑥 = 𝐴𝐵 = {𝐴}))
54con3d 152 . . 3 (𝐴𝐵 → (¬ 𝐵 = {𝐴} → ¬ ∀𝑥𝐵 𝑥 = 𝐴))
6 df-ne 2941 . . 3 (𝐵 ≠ {𝐴} ↔ ¬ 𝐵 = {𝐴})
7 nne 2944 . . . . . . 7 𝑥𝐴𝑥 = 𝐴)
87bicomi 223 . . . . . 6 (𝑥 = 𝐴 ↔ ¬ 𝑥𝐴)
98ralbii 3093 . . . . 5 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
10 ralnex 3072 . . . . 5 (∀𝑥𝐵 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
119, 10bitri 274 . . . 4 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
1211con2bii 357 . . 3 (∃𝑥𝐵 𝑥𝐴 ↔ ¬ ∀𝑥𝐵 𝑥 = 𝐴)
135, 6, 123imtr4g 295 . 2 (𝐴𝐵 → (𝐵 ≠ {𝐴} → ∃𝑥𝐵 𝑥𝐴))
1413imp 407 1 ((𝐴𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  c0 4321  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator