Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0nsn2el Structured version   Visualization version   GIF version

Theorem n0nsn2el 46470
Description: If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.)
Assertion
Ref Expression
n0nsn2el ((𝐴𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem n0nsn2el
StepHypRef Expression
1 ne0i 4330 . . . . . 6 (𝐴𝐵𝐵 ≠ ∅)
2 eqsn 4828 . . . . . 6 (𝐵 ≠ ∅ → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
31, 2syl 17 . . . . 5 (𝐴𝐵 → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
43biimprd 247 . . . 4 (𝐴𝐵 → (∀𝑥𝐵 𝑥 = 𝐴𝐵 = {𝐴}))
54con3d 152 . . 3 (𝐴𝐵 → (¬ 𝐵 = {𝐴} → ¬ ∀𝑥𝐵 𝑥 = 𝐴))
6 df-ne 2931 . . 3 (𝐵 ≠ {𝐴} ↔ ¬ 𝐵 = {𝐴})
7 nne 2934 . . . . . . 7 𝑥𝐴𝑥 = 𝐴)
87bicomi 223 . . . . . 6 (𝑥 = 𝐴 ↔ ¬ 𝑥𝐴)
98ralbii 3083 . . . . 5 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
10 ralnex 3062 . . . . 5 (∀𝑥𝐵 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
119, 10bitri 274 . . . 4 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
1211con2bii 356 . . 3 (∃𝑥𝐵 𝑥𝐴 ↔ ¬ ∀𝑥𝐵 𝑥 = 𝐴)
135, 6, 123imtr4g 295 . 2 (𝐴𝐵 → (𝐵 ≠ {𝐴} → ∃𝑥𝐵 𝑥𝐴))
1413imp 405 1 ((𝐴𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2930  wral 3051  wrex 3060  c0 4318  {csn 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-v 3465  df-dif 3942  df-ss 3956  df-nul 4319  df-sn 4625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator