![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > n0nsn2el | Structured version Visualization version GIF version |
Description: If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) |
Ref | Expression |
---|---|
n0nsn2el | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4333 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
2 | eqsn 4831 | . . . . . 6 ⊢ (𝐵 ≠ ∅ → (𝐵 = {𝐴} ↔ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = {𝐴} ↔ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴)) |
4 | 3 | biimprd 247 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝐵 = {𝐴})) |
5 | 4 | con3d 152 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐵 = {𝐴} → ¬ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴)) |
6 | df-ne 2941 | . . 3 ⊢ (𝐵 ≠ {𝐴} ↔ ¬ 𝐵 = {𝐴}) | |
7 | nne 2944 | . . . . . . 7 ⊢ (¬ 𝑥 ≠ 𝐴 ↔ 𝑥 = 𝐴) | |
8 | 7 | bicomi 223 | . . . . . 6 ⊢ (𝑥 = 𝐴 ↔ ¬ 𝑥 ≠ 𝐴) |
9 | 8 | ralbii 3093 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ≠ 𝐴) |
10 | ralnex 3072 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 ≠ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | |
11 | 9, 10 | bitri 274 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
12 | 11 | con2bii 357 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ¬ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴) |
13 | 5, 6, 12 | 3imtr4g 295 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≠ {𝐴} → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴)) |
14 | 13 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4321 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |