| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aisbnaxb | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| aisbnaxb.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| aisbnaxb | ⊢ ¬ (𝜑 ⊻ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisbnaxb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ (𝜑 ↔ 𝜓) |
| 3 | df-xor 1512 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ (𝜑 ⊻ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 |
| This theorem is referenced by: dandysum2p2e4 47010 |
| Copyright terms: Public domain | W3C validator |