Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notnoti | Structured version Visualization version GIF version |
Description: Inference associated with notnot 142. (Contributed by NM, 27-Feb-2008.) |
Ref | Expression |
---|---|
notnoti.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
notnoti | ⊢ ¬ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnoti.1 | . 2 ⊢ 𝜑 | |
2 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nbn3 374 fal 1553 trunorfalOLD 1590 ax6dgen 2124 dfnul2 4259 dfnul2OLD 4261 dfnul4OLD 4263 mdegleb 25229 nexntru 34593 amosym1 34615 bj-ntrufal 34750 ifpdfan2 41070 aisbnaxb 44406 |
Copyright terms: Public domain | W3C validator |