|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > notnoti | Structured version Visualization version GIF version | ||
| Description: Inference associated with notnot 142. (Contributed by NM, 27-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| notnoti.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| notnoti | ⊢ ¬ ¬ 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notnoti.1 | . 2 ⊢ 𝜑 | |
| 2 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ ¬ 𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: nbn3 373 fal 1554 ax6dgen 2128 dfnul2 4336 mdegleb 26103 nexntru 36405 bj-ntrufal 36570 ifpdfan2 43476 rext0 44959 aisbnaxb 46923 | 
| Copyright terms: Public domain | W3C validator |