| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3pm3.2ni 1490 fal 1555 eqneltri 2852 nemtbir 3025 ru 3735 ruOLD 3736 pssirr 4052 noel 4287 vn0 4294 uni0 4888 iun0 5014 0iun 5015 br0 5144 vprc 5257 iin0 5304 nfnid 5317 opelopabsb 5475 0nelopab 5510 0nelxp 5655 nrelv 5746 dm0 5866 cnv0 6093 cnv0OLD 6094 co02 6215 nlim0 6373 snsn0non 6439 imadif 6572 0fv 6871 poxp2 8081 poseq 8096 tz7.44lem1 8332 nlim1 8412 nlim2 8413 sdom0 9031 canth2 9052 snnen2o 9138 1sdom2 9141 canthp1lem2 10553 pwxpndom2 10565 adderpq 10856 mulerpq 10857 0ncn 11033 ax1ne0 11060 inelr 12124 xrltnr 13022 fzouzdisj 13599 lsw0 14476 eirr 16118 ruc 16156 aleph1re 16158 sqrt2irr 16162 n2dvds1 16283 n2dvds3 16286 sadc0 16369 1nprm 16594 join0 18313 meet0 18314 smndex1n0mnd 18824 nsmndex1 18825 smndex2dnrinv 18827 odhash 19490 cnfldfun 21309 cnfldfunOLD 21322 zringndrg 21409 zfbas 23814 ustn0 24139 zclmncvs 25078 lhop 25951 dvrelog 26576 nosgnn0 27600 sltsolem1 27617 addsrid 27910 muls01 28054 mulsrid 28055 axlowdimlem13 28936 ntrl2v2e 30142 konigsberglem4 30239 avril1 30447 helloworld 30449 topnfbey 30453 vsfval 30617 dmadjrnb 31890 xrge00 33004 esumrnmpt2 34104 measvuni 34250 sibf0 34370 ballotlem4 34535 signswch 34597 satf0n0 35445 fmlaomn0 35457 gonan0 35459 goaln0 35460 fmla0disjsuc 35465 elpotr 35846 dfon2lem7 35854 linedegen 36210 nmotru 36475 limsucncmpi 36512 bj-ru1 37010 bj-0nel1 37020 bj-inftyexpitaudisj 37272 bj-pinftynminfty 37294 finxp0 37458 poimirlem30 37713 coss0 38604 epnsymrel 38681 sn-inelr 42608 diophren 42933 permaxnul 45128 permaxinf2lem 45132 notbicom 45289 rexanuz2nf 45617 stoweidlem44 46169 fourierdlem62 46293 salexct2 46464 chnerlem1 47007 aisbnaxb 47038 dandysum2p2e4 47125 iota0ndef 47166 aiota0ndef 47224 257prm 47688 fmtno4nprmfac193 47701 139prmALT 47723 31prm 47724 127prm 47726 nnsum4primeseven 47927 nnsum4primesevenALTV 47928 usgrexmpl2trifr 48164 0nodd 48297 2nodd 48299 1neven 48365 2zrngnring 48385 ex-gt 49856 alsi-no-surprise 49924 |
| Copyright terms: Public domain | W3C validator |