Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fal 1553 eqneltri 2833 nemtbir 3041 ru 3716 pssirr 4036 indifdirOLD 4220 noel 4265 noelOLD 4266 iun0 4992 0iun 4993 br0 5124 vprc 5240 iin0 5285 nfnid 5299 opelopabsb 5444 0nelopab 5481 0nelxp 5624 0xp 5686 nrelv 5712 dm0 5832 cnv0 6049 co02 6168 nlim0 6328 snsn0non 6389 imadif 6525 0fv 6822 tz7.44lem1 8245 nlim1 8328 nlim2 8329 sdom0 8904 canth2 8926 snnen2o 9035 canthp1lem2 10418 pwxpndom2 10430 adderpq 10721 mulerpq 10722 0ncn 10898 ax1ne0 10925 inelr 11972 xrltnr 12864 fzouzdisj 13432 lsw0 14277 eirr 15923 ruc 15961 aleph1re 15963 sqrt2irr 15967 n2dvds1 16086 n2dvds3 16089 sadc0 16170 1nprm 16393 join0 18132 meet0 18133 smndex1n0mnd 18560 nsmndex1 18561 smndex2dnrinv 18563 odhash 19188 cnfldfun 20618 zringndrg 20699 zfbas 23056 ustn0 23381 zclmncvs 24321 lhop 25189 dvrelog 25801 axlowdimlem13 27331 ntrl2v2e 28531 konigsberglem4 28628 avril1 28836 helloworld 28838 topnfbey 28842 vsfval 29004 dmadjrnb 30277 xrge00 31304 esumrnmpt2 32045 measvuni 32191 sibf0 32310 ballotlem4 32474 signswch 32549 bnj521 32725 satf0n0 33349 fmlaomn0 33361 gonan0 33363 goaln0 33364 fmla0disjsuc 33369 3pm3.2ni 33665 elpotr 33766 dfon2lem7 33774 poxp2 33799 poseq 33811 nosgnn0 33870 sltsolem1 33887 addsid1 34136 linedegen 34454 nmotru 34606 subsym1 34625 limsucncmpi 34643 bj-ru1 35141 bj-0nel1 35152 bj-inftyexpitaudisj 35385 bj-pinftynminfty 35407 finxp0 35571 poimirlem30 35816 coss0 36604 epnsymrel 36683 diophren 40642 stoweidlem44 43592 fourierdlem62 43716 salexct2 43885 aisbnaxb 44417 dandysum2p2e4 44504 iota0ndef 44544 aiota0ndef 44600 257prm 45024 fmtno4nprmfac193 45037 139prmALT 45059 31prm 45060 127prm 45062 nnsum4primeseven 45263 nnsum4primesevenALTV 45264 0nodd 45375 2nodd 45377 1neven 45501 2zrngnring 45521 ex-gt 46441 alsi-no-surprise 46511 |
Copyright terms: Public domain | W3C validator |