![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 3pm3.2ni 1487 fal 1551 eqneltri 2863 nemtbir 3044 ru 3802 ruOLD 3803 pssirr 4126 noel 4360 noelOLD 4361 iun0 5085 0iun 5086 br0 5215 vprc 5333 iin0 5380 nfnid 5393 opelopabsb 5549 0nelopab 5586 0nelxp 5734 0xp 5798 nrelv 5824 dm0 5945 cnv0 6172 co02 6291 nlim0 6454 snsn0non 6520 imadif 6662 0fv 6964 poxp2 8184 poseq 8199 tz7.44lem1 8461 nlim1 8545 nlim2 8546 sdom0 9174 canth2 9196 snnen2o 9300 1sdom2 9303 canthp1lem2 10722 pwxpndom2 10734 adderpq 11025 mulerpq 11026 0ncn 11202 ax1ne0 11229 inelr 12283 xrltnr 13182 fzouzdisj 13752 lsw0 14613 eirr 16253 ruc 16291 aleph1re 16293 sqrt2irr 16297 n2dvds1 16416 n2dvds3 16419 sadc0 16500 1nprm 16726 join0 18475 meet0 18476 smndex1n0mnd 18947 nsmndex1 18948 smndex2dnrinv 18950 odhash 19616 cnfldfun 21401 cnfldfunOLD 21414 zringndrg 21502 zfbas 23925 ustn0 24250 zclmncvs 25201 lhop 26075 dvrelog 26697 nosgnn0 27721 sltsolem1 27738 addsrid 28015 muls01 28156 mulsrid 28157 axlowdimlem13 28987 ntrl2v2e 30190 konigsberglem4 30287 avril1 30495 helloworld 30497 topnfbey 30501 vsfval 30665 dmadjrnb 31938 xrge00 32998 esumrnmpt2 34032 measvuni 34178 sibf0 34299 ballotlem4 34463 signswch 34538 satf0n0 35346 fmlaomn0 35358 gonan0 35360 goaln0 35361 fmla0disjsuc 35366 elpotr 35745 dfon2lem7 35753 linedegen 36107 nmotru 36374 limsucncmpi 36411 bj-ru1 36909 bj-0nel1 36919 bj-inftyexpitaudisj 37171 bj-pinftynminfty 37193 finxp0 37357 poimirlem30 37610 coss0 38435 epnsymrel 38518 diophren 42769 notbicom 45071 rexanuz2nf 45408 stoweidlem44 45965 fourierdlem62 46089 salexct2 46260 aisbnaxb 46826 dandysum2p2e4 46913 iota0ndef 46954 aiota0ndef 47012 257prm 47435 fmtno4nprmfac193 47448 139prmALT 47470 31prm 47471 127prm 47473 nnsum4primeseven 47674 nnsum4primesevenALTV 47675 usgrexmpl2trifr 47852 0nodd 47893 2nodd 47895 1neven 47961 2zrngnring 47981 ex-gt 48820 alsi-no-surprise 48890 |
Copyright terms: Public domain | W3C validator |