![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3pm3.2ni 1489 fal 1556 eqneltri 2853 nemtbir 3039 ru 3777 pssirr 4101 indifdirOLD 4286 noel 4331 noelOLD 4332 iun0 5066 0iun 5067 br0 5198 vprc 5316 iin0 5361 nfnid 5374 opelopabsb 5531 0nelopab 5568 0nelxp 5711 0xp 5775 nrelv 5801 dm0 5921 cnv0 6141 co02 6260 nlim0 6424 snsn0non 6490 imadif 6633 0fv 6936 poxp2 8129 poseq 8144 tz7.44lem1 8405 nlim1 8489 nlim2 8490 sdom0 9108 canth2 9130 snnen2o 9237 1sdom2 9240 canthp1lem2 10648 pwxpndom2 10660 adderpq 10951 mulerpq 10952 0ncn 11128 ax1ne0 11155 inelr 12202 xrltnr 13099 fzouzdisj 13668 lsw0 14515 eirr 16148 ruc 16186 aleph1re 16188 sqrt2irr 16192 n2dvds1 16311 n2dvds3 16314 sadc0 16395 1nprm 16616 join0 18358 meet0 18359 smndex1n0mnd 18793 nsmndex1 18794 smndex2dnrinv 18796 odhash 19442 cnfldfun 20956 zringndrg 21038 zfbas 23400 ustn0 23725 zclmncvs 24665 lhop 25533 dvrelog 26145 nosgnn0 27161 sltsolem1 27178 addsrid 27448 muls01 27568 mulsrid 27569 axlowdimlem13 28212 ntrl2v2e 29411 konigsberglem4 29508 avril1 29716 helloworld 29718 topnfbey 29722 vsfval 29886 dmadjrnb 31159 xrge00 32187 esumrnmpt2 33066 measvuni 33212 sibf0 33333 ballotlem4 33497 signswch 33572 satf0n0 34369 fmlaomn0 34381 gonan0 34383 goaln0 34384 fmla0disjsuc 34389 elpotr 34753 dfon2lem7 34761 linedegen 35115 nmotru 35293 limsucncmpi 35330 bj-ru1 35824 bj-0nel1 35834 bj-inftyexpitaudisj 36086 bj-pinftynminfty 36108 finxp0 36272 poimirlem30 36518 coss0 37349 epnsymrel 37432 diophren 41551 notbicom 43860 rexanuz2nf 44203 stoweidlem44 44760 fourierdlem62 44884 salexct2 45055 aisbnaxb 45621 dandysum2p2e4 45708 iota0ndef 45749 aiota0ndef 45805 257prm 46229 fmtno4nprmfac193 46242 139prmALT 46264 31prm 46265 127prm 46267 nnsum4primeseven 46468 nnsum4primesevenALTV 46469 0nodd 46580 2nodd 46582 1neven 46830 2zrngnring 46850 ex-gt 47773 alsi-no-surprise 47843 |
Copyright terms: Public domain | W3C validator |