Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 321 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fal 1553 eqneltri 2832 nemtbir 3039 ru 3710 pssirr 4031 indifdirOLD 4216 noel 4261 noelOLD 4262 iun0 4987 0iun 4988 br0 5119 vprc 5234 iin0 5279 nfnid 5293 opelopabsb 5436 0nelopab 5471 0nelxp 5614 0xp 5675 nrelv 5699 dm0 5818 cnv0 6033 co02 6153 nlim0 6309 snsn0non 6370 imadif 6502 0fv 6795 tz7.44lem1 8207 canth2 8866 canthp1lem2 10340 pwxpndom2 10352 adderpq 10643 mulerpq 10644 0ncn 10820 ax1ne0 10847 inelr 11893 xrltnr 12784 fzouzdisj 13351 lsw0 14196 eirr 15842 ruc 15880 aleph1re 15882 sqrt2irr 15886 n2dvds1 16005 n2dvds3 16008 sadc0 16089 1nprm 16312 join0 18038 meet0 18039 smndex1n0mnd 18466 nsmndex1 18467 smndex2dnrinv 18469 odhash 19094 cnfldfunALT 20523 zringndrg 20602 zfbas 22955 ustn0 23280 zclmncvs 24217 lhop 25085 dvrelog 25697 axlowdimlem13 27225 ntrl2v2e 28423 konigsberglem4 28520 avril1 28728 helloworld 28730 topnfbey 28734 vsfval 28896 dmadjrnb 30169 xrge00 31197 esumrnmpt2 31936 measvuni 32082 sibf0 32201 ballotlem4 32365 signswch 32440 bnj521 32616 satf0n0 33240 fmlaomn0 33252 gonan0 33254 goaln0 33255 fmla0disjsuc 33260 3pm3.2ni 33558 elpotr 33663 dfon2lem7 33671 poxp2 33717 poseq 33729 nosgnn0 33788 sltsolem1 33805 addsid1 34054 linedegen 34372 nmotru 34524 subsym1 34543 limsucncmpi 34561 bj-ru1 35059 bj-0nel1 35070 bj-inftyexpitaudisj 35303 bj-pinftynminfty 35325 finxp0 35489 poimirlem30 35734 coss0 36524 epnsymrel 36603 diophren 40551 stoweidlem44 43475 fourierdlem62 43599 salexct2 43768 aisbnaxb 44293 dandysum2p2e4 44380 iota0ndef 44420 aiota0ndef 44476 257prm 44901 fmtno4nprmfac193 44914 139prmALT 44936 31prm 44937 127prm 44939 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 0nodd 45252 2nodd 45254 1neven 45378 2zrngnring 45398 ex-gt 46316 alsi-no-surprise 46386 |
Copyright terms: Public domain | W3C validator |