| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3pm3.2ni 1490 fal 1554 eqneltri 2847 nemtbir 3021 ru 3751 ruOLD 3752 pssirr 4066 noel 4301 iun0 5026 0iun 5027 br0 5156 vprc 5270 iin0 5317 nfnid 5330 opelopabsb 5490 0nelopab 5527 0nelxp 5672 0xp 5737 nrelv 5763 dm0 5884 cnv0 6113 co02 6233 nlim0 6392 snsn0non 6459 imadif 6600 0fv 6902 poxp2 8122 poseq 8137 tz7.44lem1 8373 nlim1 8453 nlim2 8454 sdom0 9073 canth2 9094 snnen2o 9184 1sdom2 9187 canthp1lem2 10606 pwxpndom2 10618 adderpq 10909 mulerpq 10910 0ncn 11086 ax1ne0 11113 inelr 12176 xrltnr 13079 fzouzdisj 13656 lsw0 14530 eirr 16173 ruc 16211 aleph1re 16213 sqrt2irr 16217 n2dvds1 16338 n2dvds3 16341 sadc0 16424 1nprm 16649 join0 18364 meet0 18365 smndex1n0mnd 18839 nsmndex1 18840 smndex2dnrinv 18842 odhash 19504 cnfldfun 21278 cnfldfunOLD 21291 zringndrg 21378 zfbas 23783 ustn0 24108 zclmncvs 25048 lhop 25921 dvrelog 26546 nosgnn0 27570 sltsolem1 27587 addsrid 27871 muls01 28015 mulsrid 28016 axlowdimlem13 28881 ntrl2v2e 30087 konigsberglem4 30184 avril1 30392 helloworld 30394 topnfbey 30398 vsfval 30562 dmadjrnb 31835 xrge00 32953 esumrnmpt2 34058 measvuni 34204 sibf0 34325 ballotlem4 34490 signswch 34552 satf0n0 35365 fmlaomn0 35377 gonan0 35379 goaln0 35380 fmla0disjsuc 35385 elpotr 35769 dfon2lem7 35777 linedegen 36131 nmotru 36396 limsucncmpi 36433 bj-ru1 36931 bj-0nel1 36941 bj-inftyexpitaudisj 37193 bj-pinftynminfty 37215 finxp0 37379 poimirlem30 37644 coss0 38470 epnsymrel 38553 sn-inelr 42475 diophren 42801 permaxnul 44998 permaxinf2lem 45002 notbicom 45159 rexanuz2nf 45488 stoweidlem44 46042 fourierdlem62 46166 salexct2 46337 aisbnaxb 46912 dandysum2p2e4 46999 iota0ndef 47040 aiota0ndef 47098 257prm 47562 fmtno4nprmfac193 47575 139prmALT 47597 31prm 47598 127prm 47600 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 usgrexmpl2trifr 48028 0nodd 48158 2nodd 48160 1neven 48226 2zrngnring 48246 ex-gt 49717 alsi-no-surprise 49785 |
| Copyright terms: Public domain | W3C validator |