| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3pm3.2ni 1490 fal 1554 eqneltri 2853 nemtbir 3028 ru 3763 ruOLD 3764 pssirr 4078 noel 4313 iun0 5038 0iun 5039 br0 5168 vprc 5285 iin0 5332 nfnid 5345 opelopabsb 5505 0nelopab 5542 0nelxp 5688 0xp 5753 nrelv 5779 dm0 5900 cnv0 6129 co02 6249 nlim0 6412 snsn0non 6478 imadif 6619 0fv 6919 poxp2 8140 poseq 8155 tz7.44lem1 8417 nlim1 8499 nlim2 8500 sdom0 9120 canth2 9142 snnen2o 9243 1sdom2 9246 canthp1lem2 10665 pwxpndom2 10677 adderpq 10968 mulerpq 10969 0ncn 11145 ax1ne0 11172 inelr 12228 xrltnr 13133 fzouzdisj 13710 lsw0 14581 eirr 16221 ruc 16259 aleph1re 16261 sqrt2irr 16265 n2dvds1 16385 n2dvds3 16388 sadc0 16471 1nprm 16696 join0 18413 meet0 18414 smndex1n0mnd 18888 nsmndex1 18889 smndex2dnrinv 18891 odhash 19553 cnfldfun 21327 cnfldfunOLD 21340 zringndrg 21427 zfbas 23832 ustn0 24157 zclmncvs 25098 lhop 25971 dvrelog 26596 nosgnn0 27620 sltsolem1 27637 addsrid 27914 muls01 28055 mulsrid 28056 axlowdimlem13 28879 ntrl2v2e 30085 konigsberglem4 30182 avril1 30390 helloworld 30392 topnfbey 30396 vsfval 30560 dmadjrnb 31833 xrge00 32953 esumrnmpt2 34045 measvuni 34191 sibf0 34312 ballotlem4 34477 signswch 34539 satf0n0 35346 fmlaomn0 35358 gonan0 35360 goaln0 35361 fmla0disjsuc 35366 elpotr 35745 dfon2lem7 35753 linedegen 36107 nmotru 36372 limsucncmpi 36409 bj-ru1 36907 bj-0nel1 36917 bj-inftyexpitaudisj 37169 bj-pinftynminfty 37191 finxp0 37355 poimirlem30 37620 coss0 38443 epnsymrel 38526 diophren 42783 permaxnul 44981 permaxinf2lem 44985 notbicom 45137 rexanuz2nf 45467 stoweidlem44 46021 fourierdlem62 46145 salexct2 46316 aisbnaxb 46888 dandysum2p2e4 46975 iota0ndef 47016 aiota0ndef 47074 257prm 47523 fmtno4nprmfac193 47536 139prmALT 47558 31prm 47559 127prm 47561 nnsum4primeseven 47762 nnsum4primesevenALTV 47763 usgrexmpl2trifr 47989 0nodd 48093 2nodd 48095 1neven 48161 2zrngnring 48181 ex-gt 49540 alsi-no-surprise 49608 |
| Copyright terms: Public domain | W3C validator |