| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3pm3.2ni 1490 fal 1554 eqneltri 2848 nemtbir 3022 ru 3754 ruOLD 3755 pssirr 4069 noel 4304 iun0 5029 0iun 5030 br0 5159 vprc 5273 iin0 5320 nfnid 5333 opelopabsb 5493 0nelopab 5530 0nelxp 5675 0xp 5740 nrelv 5766 dm0 5887 cnv0 6116 co02 6236 nlim0 6395 snsn0non 6462 imadif 6603 0fv 6905 poxp2 8125 poseq 8140 tz7.44lem1 8376 nlim1 8456 nlim2 8457 sdom0 9079 canth2 9100 snnen2o 9191 1sdom2 9194 canthp1lem2 10613 pwxpndom2 10625 adderpq 10916 mulerpq 10917 0ncn 11093 ax1ne0 11120 inelr 12183 xrltnr 13086 fzouzdisj 13663 lsw0 14537 eirr 16180 ruc 16218 aleph1re 16220 sqrt2irr 16224 n2dvds1 16345 n2dvds3 16348 sadc0 16431 1nprm 16656 join0 18371 meet0 18372 smndex1n0mnd 18846 nsmndex1 18847 smndex2dnrinv 18849 odhash 19511 cnfldfun 21285 cnfldfunOLD 21298 zringndrg 21385 zfbas 23790 ustn0 24115 zclmncvs 25055 lhop 25928 dvrelog 26553 nosgnn0 27577 sltsolem1 27594 addsrid 27878 muls01 28022 mulsrid 28023 axlowdimlem13 28888 ntrl2v2e 30094 konigsberglem4 30191 avril1 30399 helloworld 30401 topnfbey 30405 vsfval 30569 dmadjrnb 31842 xrge00 32960 esumrnmpt2 34065 measvuni 34211 sibf0 34332 ballotlem4 34497 signswch 34559 satf0n0 35372 fmlaomn0 35384 gonan0 35386 goaln0 35387 fmla0disjsuc 35392 elpotr 35776 dfon2lem7 35784 linedegen 36138 nmotru 36403 limsucncmpi 36440 bj-ru1 36938 bj-0nel1 36948 bj-inftyexpitaudisj 37200 bj-pinftynminfty 37222 finxp0 37386 poimirlem30 37651 coss0 38477 epnsymrel 38560 sn-inelr 42482 diophren 42808 permaxnul 45005 permaxinf2lem 45009 notbicom 45166 rexanuz2nf 45495 stoweidlem44 46049 fourierdlem62 46173 salexct2 46344 aisbnaxb 46916 dandysum2p2e4 47003 iota0ndef 47044 aiota0ndef 47102 257prm 47566 fmtno4nprmfac193 47579 139prmALT 47601 31prm 47602 127prm 47604 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 usgrexmpl2trifr 48032 0nodd 48162 2nodd 48164 1neven 48230 2zrngnring 48250 ex-gt 49721 alsi-no-surprise 49789 |
| Copyright terms: Public domain | W3C validator |