Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 227 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 325 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: fal 1552 eqneltri 2845 nemtbir 3046 ru 3695 pssirr 4006 indifdirOLD 4190 noel 4230 iun0 4950 0iun 4951 br0 5081 vprc 5185 iin0 5229 nfnid 5244 opelopabsb 5387 0nelxp 5558 0xp 5618 nrelv 5642 dm0 5761 cnv0 5971 co02 6090 nlim0 6227 snsn0non 6288 imadif 6419 0fv 6697 tz7.44lem1 8051 canth2 8692 canthp1lem2 10113 pwxpndom2 10125 adderpq 10416 mulerpq 10417 0ncn 10593 ax1ne0 10620 inelr 11664 xrltnr 12555 fzouzdisj 13122 lsw0 13964 eirr 15606 ruc 15644 aleph1re 15646 sqrt2irr 15650 n2dvds1 15769 n2dvds3 15772 sadc0 15853 1nprm 16075 meet0 17813 join0 17814 smndex1n0mnd 18143 nsmndex1 18144 smndex2dnrinv 18146 odhash 18766 cnfldfunALT 20179 zringndrg 20258 zfbas 22596 ustn0 22921 zclmncvs 23849 lhop 24715 dvrelog 25327 axlowdimlem13 26847 ntrl2v2e 28042 konigsberglem4 28139 avril1 28347 helloworld 28349 topnfbey 28353 vsfval 28515 dmadjrnb 29788 xrge00 30821 esumrnmpt2 31555 measvuni 31701 sibf0 31820 ballotlem4 31984 signswch 32059 bnj521 32235 satf0n0 32856 fmlaomn0 32868 gonan0 32870 goaln0 32871 fmla0disjsuc 32876 3pm3.2ni 33174 elpotr 33273 dfon2lem7 33281 poxp2 33345 poseq 33356 nosgnn0 33426 sltsolem1 33443 addsid1 33675 linedegen 33994 nmotru 34146 subsym1 34165 limsucncmpi 34183 bj-ru1 34659 bj-0nel1 34670 bj-inftyexpitaudisj 34900 bj-pinftynminfty 34922 bj-isrvec 34988 finxp0 35088 poimirlem30 35367 coss0 36159 epnsymrel 36238 diophren 40127 stoweidlem44 43052 fourierdlem62 43176 salexct2 43345 aisbnaxb 43870 dandysum2p2e4 43957 iota0ndef 43997 aiota0ndef 44020 257prm 44446 fmtno4nprmfac193 44459 139prmALT 44481 31prm 44482 127prm 44484 nnsum4primeseven 44685 nnsum4primesevenALTV 44686 0nodd 44797 2nodd 44799 1neven 44923 2zrngnring 44943 ex-gt 45645 alsi-no-surprise 45715 |
Copyright terms: Public domain | W3C validator |