| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3pm3.2ni 1490 fal 1555 eqneltri 2850 nemtbir 3024 ru 3739 ruOLD 3740 pssirr 4053 noel 4288 iun0 5010 0iun 5011 br0 5140 vprc 5253 iin0 5300 nfnid 5313 opelopabsb 5470 0nelopab 5505 0nelxp 5650 0xp 5715 nrelv 5740 dm0 5860 cnv0 6087 co02 6208 nlim0 6366 snsn0non 6432 imadif 6565 0fv 6863 poxp2 8073 poseq 8088 tz7.44lem1 8324 nlim1 8404 nlim2 8405 sdom0 9022 canth2 9043 snnen2o 9129 1sdom2 9132 canthp1lem2 10544 pwxpndom2 10556 adderpq 10847 mulerpq 10848 0ncn 11024 ax1ne0 11051 inelr 12115 xrltnr 13018 fzouzdisj 13595 lsw0 14472 eirr 16114 ruc 16152 aleph1re 16154 sqrt2irr 16158 n2dvds1 16279 n2dvds3 16282 sadc0 16365 1nprm 16590 join0 18309 meet0 18310 smndex1n0mnd 18820 nsmndex1 18821 smndex2dnrinv 18823 odhash 19487 cnfldfun 21306 cnfldfunOLD 21319 zringndrg 21406 zfbas 23812 ustn0 24137 zclmncvs 25076 lhop 25949 dvrelog 26574 nosgnn0 27598 sltsolem1 27615 addsrid 27908 muls01 28052 mulsrid 28053 axlowdimlem13 28933 ntrl2v2e 30136 konigsberglem4 30233 avril1 30441 helloworld 30443 topnfbey 30447 vsfval 30611 dmadjrnb 31884 xrge00 32993 esumrnmpt2 34079 measvuni 34225 sibf0 34345 ballotlem4 34510 signswch 34572 satf0n0 35420 fmlaomn0 35432 gonan0 35434 goaln0 35435 fmla0disjsuc 35440 elpotr 35821 dfon2lem7 35829 linedegen 36183 nmotru 36448 limsucncmpi 36485 bj-ru1 36983 bj-0nel1 36993 bj-inftyexpitaudisj 37245 bj-pinftynminfty 37267 finxp0 37431 poimirlem30 37696 coss0 38522 epnsymrel 38605 sn-inelr 42526 diophren 42852 permaxnul 45047 permaxinf2lem 45051 notbicom 45208 rexanuz2nf 45536 stoweidlem44 46088 fourierdlem62 46212 salexct2 46383 aisbnaxb 46948 dandysum2p2e4 47035 iota0ndef 47076 aiota0ndef 47134 257prm 47598 fmtno4nprmfac193 47611 139prmALT 47633 31prm 47634 127prm 47636 nnsum4primeseven 47837 nnsum4primesevenALTV 47838 usgrexmpl2trifr 48074 0nodd 48207 2nodd 48209 1neven 48275 2zrngnring 48295 ex-gt 49766 alsi-no-surprise 49834 |
| Copyright terms: Public domain | W3C validator |