![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 3pm3.2ni 1486 fal 1550 eqneltri 2857 nemtbir 3035 ru 3788 ruOLD 3789 pssirr 4112 noel 4343 iun0 5066 0iun 5067 br0 5196 vprc 5320 iin0 5367 nfnid 5380 opelopabsb 5539 0nelopab 5576 0nelxp 5722 0xp 5786 nrelv 5812 dm0 5933 cnv0 6162 co02 6281 nlim0 6444 snsn0non 6510 imadif 6651 0fv 6950 poxp2 8166 poseq 8181 tz7.44lem1 8443 nlim1 8525 nlim2 8526 sdom0 9146 canth2 9168 snnen2o 9270 1sdom2 9273 canthp1lem2 10690 pwxpndom2 10702 adderpq 10993 mulerpq 10994 0ncn 11170 ax1ne0 11197 inelr 12253 xrltnr 13158 fzouzdisj 13731 lsw0 14599 eirr 16237 ruc 16275 aleph1re 16277 sqrt2irr 16281 n2dvds1 16401 n2dvds3 16404 sadc0 16487 1nprm 16712 join0 18462 meet0 18463 smndex1n0mnd 18937 nsmndex1 18938 smndex2dnrinv 18940 odhash 19606 cnfldfun 21395 cnfldfunOLD 21408 zringndrg 21496 zfbas 23919 ustn0 24244 zclmncvs 25195 lhop 26069 dvrelog 26693 nosgnn0 27717 sltsolem1 27734 addsrid 28011 muls01 28152 mulsrid 28153 axlowdimlem13 28983 ntrl2v2e 30186 konigsberglem4 30283 avril1 30491 helloworld 30493 topnfbey 30497 vsfval 30661 dmadjrnb 31934 xrge00 32999 esumrnmpt2 34048 measvuni 34194 sibf0 34315 ballotlem4 34479 signswch 34554 satf0n0 35362 fmlaomn0 35374 gonan0 35376 goaln0 35377 fmla0disjsuc 35382 elpotr 35762 dfon2lem7 35770 linedegen 36124 nmotru 36390 limsucncmpi 36427 bj-ru1 36925 bj-0nel1 36935 bj-inftyexpitaudisj 37187 bj-pinftynminfty 37209 finxp0 37373 poimirlem30 37636 coss0 38460 epnsymrel 38543 diophren 42800 notbicom 45107 rexanuz2nf 45442 stoweidlem44 45999 fourierdlem62 46123 salexct2 46294 aisbnaxb 46860 dandysum2p2e4 46947 iota0ndef 46988 aiota0ndef 47046 257prm 47485 fmtno4nprmfac193 47498 139prmALT 47520 31prm 47521 127prm 47523 nnsum4primeseven 47724 nnsum4primesevenALTV 47725 usgrexmpl2trifr 47931 0nodd 48013 2nodd 48015 1neven 48081 2zrngnring 48101 ex-gt 48958 alsi-no-surprise 49026 |
Copyright terms: Public domain | W3C validator |