| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3pm3.2ni 1490 fal 1554 eqneltri 2847 nemtbir 3021 ru 3742 ruOLD 3743 pssirr 4056 noel 4291 iun0 5014 0iun 5015 br0 5144 vprc 5257 iin0 5304 nfnid 5317 opelopabsb 5477 0nelopab 5512 0nelxp 5657 0xp 5722 nrelv 5747 dm0 5867 cnv0 6093 co02 6213 nlim0 6371 snsn0non 6437 imadif 6570 0fv 6868 poxp2 8083 poseq 8098 tz7.44lem1 8334 nlim1 8414 nlim2 8415 sdom0 9033 canth2 9054 snnen2o 9144 1sdom2 9147 canthp1lem2 10566 pwxpndom2 10578 adderpq 10869 mulerpq 10870 0ncn 11046 ax1ne0 11073 inelr 12136 xrltnr 13039 fzouzdisj 13616 lsw0 14490 eirr 16132 ruc 16170 aleph1re 16172 sqrt2irr 16176 n2dvds1 16297 n2dvds3 16300 sadc0 16383 1nprm 16608 join0 18327 meet0 18328 smndex1n0mnd 18804 nsmndex1 18805 smndex2dnrinv 18807 odhash 19471 cnfldfun 21293 cnfldfunOLD 21306 zringndrg 21393 zfbas 23799 ustn0 24124 zclmncvs 25064 lhop 25937 dvrelog 26562 nosgnn0 27586 sltsolem1 27603 addsrid 27894 muls01 28038 mulsrid 28039 axlowdimlem13 28917 ntrl2v2e 30120 konigsberglem4 30217 avril1 30425 helloworld 30427 topnfbey 30431 vsfval 30595 dmadjrnb 31868 xrge00 32981 esumrnmpt2 34037 measvuni 34183 sibf0 34304 ballotlem4 34469 signswch 34531 satf0n0 35353 fmlaomn0 35365 gonan0 35367 goaln0 35368 fmla0disjsuc 35373 elpotr 35757 dfon2lem7 35765 linedegen 36119 nmotru 36384 limsucncmpi 36421 bj-ru1 36919 bj-0nel1 36929 bj-inftyexpitaudisj 37181 bj-pinftynminfty 37203 finxp0 37367 poimirlem30 37632 coss0 38458 epnsymrel 38541 sn-inelr 42463 diophren 42789 permaxnul 44985 permaxinf2lem 44989 notbicom 45146 rexanuz2nf 45475 stoweidlem44 46029 fourierdlem62 46153 salexct2 46324 aisbnaxb 46899 dandysum2p2e4 46986 iota0ndef 47027 aiota0ndef 47085 257prm 47549 fmtno4nprmfac193 47562 139prmALT 47584 31prm 47585 127prm 47587 nnsum4primeseven 47788 nnsum4primesevenALTV 47789 usgrexmpl2trifr 48025 0nodd 48158 2nodd 48160 1neven 48226 2zrngnring 48246 ex-gt 49717 alsi-no-surprise 49785 |
| Copyright terms: Public domain | W3C validator |