Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > al2im | Structured version Visualization version GIF version |
Description: Closed form of al2imi 1819. Version of alim 1814 for a nested implication. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
al2im | ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim 1814 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒))) | |
2 | alim 1814 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1813 |
This theorem is referenced by: al2imi 1819 bj-alanim 34721 al3im 41144 19.41rgVD 42411 |
Copyright terms: Public domain | W3C validator |