Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.41rgVD Structured version   Visualization version   GIF version

Theorem 19.41rgVD 44895
Description: Virtual deduction proof of 19.41rg 44544. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 44544 is 19.41rgVD 44895 without virtual deductions and was automatically derived from 19.41rgVD 44895. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (𝜓 → (𝜑 → (𝜑𝜓)))
2:1: ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑𝜓))))
3:2: 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
4:3: (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 𝑥(𝜑 → (𝜑𝜓))))
5:: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
6:4,5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
7:: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥𝜓   )
8:6,7: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥(𝜑 → (𝜑𝜓))   )
9:8: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
10:9: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
11:5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   )
12:10,11: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( 𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
13:12: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
14:13: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
qed:14: (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 𝜓) → ∃𝑥(𝜑𝜓)))
Assertion
Ref Expression
19.41rgVD (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))

Proof of Theorem 19.41rgVD
StepHypRef Expression
1 idn1 44568 . . . . . . . . 9 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
2 pm3.2 469 . . . . . . . . . . . . 13 (𝜑 → (𝜓 → (𝜑𝜓)))
32com12 32 . . . . . . . . . . . 12 (𝜓 → (𝜑 → (𝜑𝜓)))
43a1i 11 . . . . . . . . . . 11 ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
54ax-gen 1795 . . . . . . . . . 10 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
6 al2im 1814 . . . . . . . . . 10 (∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓)))) → (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))))
75, 6e0a 44765 . . . . . . . . 9 (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
81, 7e1a 44621 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
9 idn2 44607 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥𝜓   )
10 id 22 . . . . . . . 8 ((∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
118, 9, 10e12 44717 . . . . . . 7 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥(𝜑 → (𝜑𝜓))   )
12 exim 1834 . . . . . . 7 (∀𝑥(𝜑 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
1311, 12e2 44625 . . . . . 6 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
1413in2 44599 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
15 sp 2184 . . . . . 6 (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓))
161, 15e1a 44621 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀𝑥𝜓)   )
17 imim2 58 . . . . 5 ((∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → ((𝜓 → ∀𝑥𝜓) → (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))))
1814, 16, 17e11 44682 . . . 4 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
19 pm2.04 90 . . . 4 ((𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))))
2018, 19e1a 44621 . . 3 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
21 pm3.31 449 . . 3 ((∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
2220, 21e1a 44621 . 2 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
2322in1 44565 1 (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-vd1 44564  df-vd2 44572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator