Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.41rgVD Structured version   Visualization version   GIF version

Theorem 19.41rgVD 41104
Description: Virtual deduction proof of 19.41rg 40752. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 40752 is 19.41rgVD 41104 without virtual deductions and was automatically derived from 19.41rgVD 41104. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (𝜓 → (𝜑 → (𝜑𝜓)))
2:1: ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑𝜓))))
3:2: 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
4:3: (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 𝑥(𝜑 → (𝜑𝜓))))
5:: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
6:4,5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
7:: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥𝜓   )
8:6,7: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥(𝜑 → (𝜑𝜓))   )
9:8: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
10:9: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
11:5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   )
12:10,11: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( 𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
13:12: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
14:13: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
qed:14: (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 𝜓) → ∃𝑥(𝜑𝜓)))
Assertion
Ref Expression
19.41rgVD (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))

Proof of Theorem 19.41rgVD
StepHypRef Expression
1 idn1 40776 . . . . . . . . 9 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
2 pm3.2 470 . . . . . . . . . . . . 13 (𝜑 → (𝜓 → (𝜑𝜓)))
32com12 32 . . . . . . . . . . . 12 (𝜓 → (𝜑 → (𝜑𝜓)))
43a1i 11 . . . . . . . . . . 11 ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
54ax-gen 1789 . . . . . . . . . 10 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
6 al2im 1808 . . . . . . . . . 10 (∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓)))) → (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))))
75, 6e0a 40974 . . . . . . . . 9 (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
81, 7e1a 40829 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
9 idn2 40815 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥𝜓   )
10 id 22 . . . . . . . 8 ((∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
118, 9, 10e12 40926 . . . . . . 7 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥(𝜑 → (𝜑𝜓))   )
12 exim 1827 . . . . . . 7 (∀𝑥(𝜑 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
1311, 12e2 40833 . . . . . 6 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
1413in2 40807 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
15 sp 2174 . . . . . 6 (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓))
161, 15e1a 40829 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀𝑥𝜓)   )
17 imim2 58 . . . . 5 ((∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → ((𝜓 → ∀𝑥𝜓) → (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))))
1814, 16, 17e11 40890 . . . 4 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
19 pm2.04 90 . . . 4 ((𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))))
2018, 19e1a 40829 . . 3 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
21 pm3.31 450 . . 3 ((∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
2220, 21e1a 40829 . 2 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
2322in1 40773 1 (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1528  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-12 2169
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774  df-vd1 40772  df-vd2 40780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator