Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.41rgVD Structured version   Visualization version   GIF version

Theorem 19.41rgVD 42522
Description: Virtual deduction proof of 19.41rg 42170. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 42170 is 19.41rgVD 42522 without virtual deductions and was automatically derived from 19.41rgVD 42522. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (𝜓 → (𝜑 → (𝜑𝜓)))
2:1: ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑𝜓))))
3:2: 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
4:3: (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 𝑥(𝜑 → (𝜑𝜓))))
5:: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
6:4,5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
7:: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥𝜓   )
8:6,7: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥(𝜑 → (𝜑𝜓))   )
9:8: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
10:9: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
11:5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   )
12:10,11: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( 𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
13:12: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
14:13: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
qed:14: (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 𝜓) → ∃𝑥(𝜑𝜓)))
Assertion
Ref Expression
19.41rgVD (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))

Proof of Theorem 19.41rgVD
StepHypRef Expression
1 idn1 42194 . . . . . . . . 9 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
2 pm3.2 470 . . . . . . . . . . . . 13 (𝜑 → (𝜓 → (𝜑𝜓)))
32com12 32 . . . . . . . . . . . 12 (𝜓 → (𝜑 → (𝜑𝜓)))
43a1i 11 . . . . . . . . . . 11 ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
54ax-gen 1798 . . . . . . . . . 10 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
6 al2im 1817 . . . . . . . . . 10 (∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓)))) → (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))))
75, 6e0a 42392 . . . . . . . . 9 (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
81, 7e1a 42247 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
9 idn2 42233 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥𝜓   )
10 id 22 . . . . . . . 8 ((∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
118, 9, 10e12 42344 . . . . . . 7 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥(𝜑 → (𝜑𝜓))   )
12 exim 1836 . . . . . . 7 (∀𝑥(𝜑 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
1311, 12e2 42251 . . . . . 6 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
1413in2 42225 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
15 sp 2176 . . . . . 6 (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓))
161, 15e1a 42247 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀𝑥𝜓)   )
17 imim2 58 . . . . 5 ((∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → ((𝜓 → ∀𝑥𝜓) → (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))))
1814, 16, 17e11 42308 . . . 4 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
19 pm2.04 90 . . . 4 ((𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))))
2018, 19e1a 42247 . . 3 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
21 pm3.31 450 . . 3 ((∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
2220, 21e1a 42247 . 2 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
2322in1 42191 1 (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-vd1 42190  df-vd2 42198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator