![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ala1 | Structured version Visualization version GIF version |
Description: Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
ala1 | ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
2 | 1 | alimi 1805 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-gen 1789 ax-4 1803 |
This theorem is referenced by: 19.38 1833 stdpc4 2063 ax12dgen 2122 ax12 2414 sb4a 2471 alral 3067 hbimtg 35274 bj-axdd2 35961 bj-ax12v3ALT 36055 bj-equsal1t 36191 |
Copyright terms: Public domain | W3C validator |