![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ala1 | Structured version Visualization version GIF version |
Description: Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
ala1 | ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
2 | 1 | alimi 1907 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-gen 1891 ax-4 1905 |
This theorem is referenced by: 19.38 1934 ax12dgen 2178 ax12 2430 stdpc4 2469 alral 3109 hbimtg 32224 bj-axdd2 33081 bj-alsb 33132 bj-ax12v3ALT 33182 bj-equsal1t 33304 |
Copyright terms: Public domain | W3C validator |