| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ala1 | Structured version Visualization version GIF version | ||
| Description: Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| ala1 | ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
| 2 | 1 | alimi 1811 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: 19.38 1839 stdpc4 2069 ax12dgen 2135 ax12 2428 sb4a 2485 alral 3066 hbimtg 35829 bj-axdd2 36615 bj-ax12v3ALT 36709 bj-equsal1t 36845 |
| Copyright terms: Public domain | W3C validator |