Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ala1 | Structured version Visualization version GIF version |
Description: Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
ala1 | ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
2 | 1 | alimi 1815 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-gen 1799 ax-4 1813 |
This theorem is referenced by: 19.38 1842 stdpc4 2072 ax12dgen 2132 ax12 2423 sb4a 2484 alral 3079 hbimtg 33688 bj-axdd2 34701 bj-ax12v3ALT 34795 bj-equsal1t 34932 |
Copyright terms: Public domain | W3C validator |