Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-alanim | Structured version Visualization version GIF version |
Description: Closed form of alanimi 1819. (Contributed by BJ, 6-May-2019.) |
Ref | Expression |
---|---|
bj-alanim | ⊢ (∀𝑥((𝜑 ∧ 𝜓) → 𝜒) → ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 449 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | alimi 1814 | . . 3 ⊢ (∀𝑥((𝜑 ∧ 𝜓) → 𝜒) → ∀𝑥(𝜑 → (𝜓 → 𝜒))) |
3 | al2im 1817 | . . 3 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥((𝜑 ∧ 𝜓) → 𝜒) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
5 | 4 | impd 411 | 1 ⊢ (∀𝑥((𝜑 ∧ 𝜓) → 𝜒) → ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |