| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > albitr | Structured version Visualization version GIF version | ||
| Description: Theorem *10.301 in [WhiteheadRussell] p. 151. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| albitr | ⊢ ((∀𝑥(𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜓 ↔ 𝜒)) → ∀𝑥(𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr 805 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | alanimi 1816 | 1 ⊢ ((∀𝑥(𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜓 ↔ 𝜒)) → ∀𝑥(𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |