Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.42 Structured version   Visualization version   GIF version

Theorem pm10.42 39089
Description: Theorem *10.42 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm10.42 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓))

Proof of Theorem pm10.42
StepHypRef Expression
1 19.43 1962 . 2 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
21bicomi 214 1 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 836  wex 1852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885
This theorem depends on definitions:  df-bi 197  df-or 837  df-ex 1853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator