![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alanimi | Structured version Visualization version GIF version |
Description: Variant of al2imi 1816 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alanimi.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
alanimi | ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alanimi.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | al2imi 1816 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
4 | 3 | imp 406 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 19.26 1872 alsyl 1895 ax13 2373 nfeqf 2379 darapti 2678 axextmo 2706 vtoclgft 3540 euind 3720 reuind 3749 sbeqalb 3845 bm1.3ii 5302 trin2 6124 ssfi 9176 bj-nnfan 35930 bj-cbv3ta 35968 bj-bm1.3ii 36249 mpobi123f 37334 mptbi12f 37338 cotrintab 42668 albitr 43425 2alanimi 43434 ichan 46422 |
Copyright terms: Public domain | W3C validator |