![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alanimi | Structured version Visualization version GIF version |
Description: Variant of al2imi 1815 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alanimi.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
alanimi | ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alanimi.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 411 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | al2imi 1815 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
4 | 3 | imp 405 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: 19.26 1871 alsyl 1894 ax13 2372 nfeqf 2378 darapti 2677 axextmo 2705 vtoclgft 3539 euind 3719 reuind 3748 sbeqalb 3844 bm1.3ii 5301 trin2 6123 ssfi 9175 bj-nnfan 35929 bj-cbv3ta 35967 bj-bm1.3ii 36248 mpobi123f 37333 mptbi12f 37337 cotrintab 42667 albitr 43424 2alanimi 43433 ichan 46421 |
Copyright terms: Public domain | W3C validator |