MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alanimi Structured version   Visualization version   GIF version

Theorem alanimi 1819
Description: Variant of al2imi 1818 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
alanimi.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
alanimi ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)

Proof of Theorem alanimi
StepHypRef Expression
1 alanimi.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 413 . . 3 (𝜑 → (𝜓𝜒))
32al2imi 1818 . 2 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
43imp 407 1 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  19.26  1873  alsyl  1896  ax13  2375  nfeqf  2381  darapti  2685  axextmo  2713  vtoclgft  3492  euind  3659  reuind  3688  sbeqalb  3784  bm1.3ii  5226  trin2  6028  ssfi  8956  bj-nnfan  34930  bj-cbv3ta  34968  bj-bm1.3ii  35235  mpobi123f  36320  mptbi12f  36324  cotrintab  41222  albitr  41981  2alanimi  41990  ichan  44907
  Copyright terms: Public domain W3C validator