MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alanimi Structured version   Visualization version   GIF version

Theorem alanimi 1813
Description: Variant of al2imi 1812 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
alanimi.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
alanimi ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)

Proof of Theorem alanimi
StepHypRef Expression
1 alanimi.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
32al2imi 1812 . 2 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
43imp 406 1 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  19.26  1868  alsyl  1891  ax13  2378  nfeqf  2384  darapti  2682  axextmo  2710  euind  3733  reuind  3762  sbeqalb  3859  bm1.3iiOLD  5308  trin2  6146  ssfi  9212  bj-nnfan  36731  bj-cbv3ta  36769  bj-bm1.3ii  37047  mpobi123f  38149  mptbi12f  38153  cotrintab  43604  albitr  44359  2alanimi  44368  ichan  47380
  Copyright terms: Public domain W3C validator