MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alanimi Structured version   Visualization version   GIF version

Theorem alanimi 1817
Description: Variant of al2imi 1816 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
alanimi.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
alanimi ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)

Proof of Theorem alanimi
StepHypRef Expression
1 alanimi.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
32al2imi 1816 . 2 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
43imp 406 1 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  19.26  1872  alsyl  1895  ax13  2373  nfeqf  2379  darapti  2678  axextmo  2706  vtoclgft  3540  euind  3720  reuind  3749  sbeqalb  3845  bm1.3ii  5302  trin2  6124  ssfi  9176  bj-nnfan  35930  bj-cbv3ta  35968  bj-bm1.3ii  36249  mpobi123f  37334  mptbi12f  37338  cotrintab  42668  albitr  43425  2alanimi  43434  ichan  46422
  Copyright terms: Public domain W3C validator