| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alanimi | Structured version Visualization version GIF version | ||
| Description: Variant of al2imi 1816 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| alanimi.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| alanimi | ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alanimi.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | al2imi 1816 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| 4 | 3 | imp 406 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 19.26 1871 alsyl 1894 ax13 2375 nfeqf 2381 darapti 2679 axextmo 2707 euind 3678 reuind 3707 sbeqalb 3799 bm1.3iiOLD 5238 trin2 6069 ssfi 9082 bj-nnfan 36790 bj-cbv3ta 36828 bj-bm1.3ii 37106 mpobi123f 38210 mptbi12f 38214 cotrintab 43655 albitr 44404 2alanimi 44413 ichan 47494 |
| Copyright terms: Public domain | W3C validator |