![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alanimi | Structured version Visualization version GIF version |
Description: Variant of al2imi 1812 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alanimi.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
alanimi | ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alanimi.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | al2imi 1812 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
4 | 3 | imp 406 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 19.26 1868 alsyl 1891 ax13 2378 nfeqf 2384 darapti 2682 axextmo 2710 euind 3733 reuind 3762 sbeqalb 3859 bm1.3iiOLD 5308 trin2 6146 ssfi 9212 bj-nnfan 36731 bj-cbv3ta 36769 bj-bm1.3ii 37047 mpobi123f 38149 mptbi12f 38153 cotrintab 43604 albitr 44359 2alanimi 44368 ichan 47380 |
Copyright terms: Public domain | W3C validator |