MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alanimi Structured version   Visualization version   GIF version

Theorem alanimi 1814
Description: Variant of al2imi 1813 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
alanimi.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
alanimi ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)

Proof of Theorem alanimi
StepHypRef Expression
1 alanimi.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
32al2imi 1813 . 2 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
43imp 406 1 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  19.26  1869  alsyl  1892  ax13  2383  nfeqf  2389  darapti  2687  axextmo  2715  euind  3746  reuind  3775  sbeqalb  3872  bm1.3ii  5320  trin2  6155  ssfi  9240  bj-nnfan  36714  bj-cbv3ta  36752  bj-bm1.3ii  37030  mpobi123f  38122  mptbi12f  38126  cotrintab  43576  albitr  44332  2alanimi  44341  ichan  47329
  Copyright terms: Public domain W3C validator