MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anidmdbi Structured version   Visualization version   GIF version

Theorem anidmdbi 565
Description: Conjunction idempotence with antecedent. (Contributed by Roy F. Longton, 8-Aug-2005.)
Assertion
Ref Expression
anidmdbi ((𝜑 → (𝜓𝜓)) ↔ (𝜑𝜓))

Proof of Theorem anidmdbi
StepHypRef Expression
1 anidm 564 . 2 ((𝜓𝜓) ↔ 𝜓)
21imbi2i 335 1 ((𝜑 → (𝜓𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  nanim  1490
  Copyright terms: Public domain W3C validator