| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2127 eqeq12d 2751 rru 3762 dedth2v 4563 dedth3v 4564 dedth4v 4565 disjprsn 4690 opidg 4868 unisng 4901 intsng 4959 isso2i 5598 poinxp 5735 posn 5740 xpid11 5912 dfpo2 6285 predpoirr 6322 predfrirr 6323 f1oprswap 6861 f1o2sn 7131 residpr 7132 f1mpt 7253 f1eqcocnv 7293 isopolem 7337 3xpexg 7744 sqxpexg 7747 poxp 8125 poxp2 8140 poxp3 8147 oe0 8532 oecl 8547 nnmsucr 8635 ecopover 8833 enrefg 8996 php 9219 phpOLD 9229 3xpfi 9330 dffi3 9441 infxpenlem 10025 isfin5 10311 isfin5-2 10403 pwfseqlem4a 10673 pwfseqlem4 10674 pwfseqlem5 10675 pwfseq 10676 nqereu 10941 halfnq 10988 ltsopr 11044 1idsr 11110 00sr 11111 sqgt0sr 11118 leid 11329 msqgt0 11755 msqge0 11756 recextlem1 11865 recextlem2 11866 recex 11867 div1 11929 cju 12234 2halves 12457 msqznn 12673 xrltnr 13133 xrleid 13165 iccid 13405 m1expeven 14125 sqneg 14131 sqcl 14134 nnsqcl 14144 qsqcl 14146 expubnd 14194 bernneq 14245 faclbnd 14306 faclbnd3 14308 hashfac 14474 leiso 14475 cjmulval 15162 fallrisefac 16039 sin2t 16193 cos2t 16194 divalglem0 16410 divalglem2 16412 gcd0id 16536 lcmid 16626 lcmgcdeq 16629 lcmfsn 16652 isprm5 16724 prslem 18307 pslem 18580 dirref 18609 efmndbasabf 18848 efmndhash 18852 efmndbasfi 18853 efmnd1bas 18869 submefmnd 18871 sgrp2nmndlem4 18904 grpsubid 19005 grp1inv 19029 cntzi 19310 symgbasfi 19358 symg1bas 19370 pgrpsubgsymg 19388 symgextfve 19398 pmtrfinv 19440 psgnsn 19499 ipeq0 21596 matsca2 22356 matbas2 22357 matplusgcell 22369 matsubgcell 22370 mamulid 22377 mamurid 22378 mattposcl 22389 mat1dimelbas 22407 mat1dimscm 22411 mat1dimmul 22412 m1detdiag 22533 mdetdiagid 22536 mdetunilem9 22556 pmatcoe1fsupp 22637 d1mat2pmat 22675 idcn 23193 hausdiag 23581 symgtgp 24042 ustref 24155 ustelimasn 24159 iducn 24219 ismet 24260 isxmet 24261 idnghm 24680 resubmet 24739 xrsxmet 24747 cphnm 25143 tcphnmval 25179 ipcau2 25184 tcphcphlem1 25185 tcphcphlem2 25186 tcphcph 25187 cmssmscld 25300 chordthmlem 26792 slerflex 27725 lrrecpo 27891 subsid 28016 divs1 28146 ismot 28460 hmoval 30737 htth 30845 hvsubid 30953 hvnegid 30954 hv2times 30988 hiidrcl 31022 normval 31051 issh2 31136 chjidm 31447 normcan 31503 ho2times 31746 kbpj 31883 lnop0 31893 riesz3i 31989 leoprf 32055 leopsq 32056 cvnref 32218 gtiso 32624 fldextid 33647 prsss 33893 deranglem 35134 elfix2 35868 linedegen 36107 filnetlem2 36343 matunitlindflem2 37587 matunitlindf 37588 ftc1anclem3 37665 prdsbnd2 37765 reheibor 37809 ismgmOLD 37820 opidon2OLD 37824 exidreslem 37847 rngo2 37877 opideq 38307 eldmcoss2 38423 2xp3dxp2ge1d 42200 sn-inelr 42457 mzpf 42706 acongrep 42951 ttac 43007 mendval 43150 iocinico 43183 iocmbl 43184 seff 44281 sblpnf 44282 sigarid 46835 cnambpcma 47271 2leaddle2 47275 grlicref 47965 clintopval 48127 2arymaptfv 48579 2arymaptfo 48582 itcoval2 48592 itcoval3 48593 resipos 48897 nelsubclem 48982 initoo2 49066 termoo2 49067 setc1onsubc 49394 |
| Copyright terms: Public domain | W3C validator |