| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2128 eqeq12d 2745 rru 3741 dedth2v 4541 dedth3v 4542 dedth4v 4543 disjprsn 4668 opidg 4846 unisng 4879 intsng 4936 isso2i 5568 poinxp 5704 posn 5709 xpid11 5878 dfpo2 6248 predpoirr 6285 predfrirr 6286 f1oprswap 6812 f1o2sn 7080 residpr 7081 f1mpt 7202 f1eqcocnv 7242 isopolem 7286 3xpexg 7692 sqxpexg 7695 poxp 8068 poxp2 8083 poxp3 8090 oe0 8447 oecl 8462 nnmsucr 8550 ecopover 8755 enrefg 8916 php 9131 3xpfi 9229 dffi3 9340 infxpenlem 9926 isfin5 10212 isfin5-2 10304 pwfseqlem4a 10574 pwfseqlem4 10575 pwfseqlem5 10576 pwfseq 10577 nqereu 10842 halfnq 10889 ltsopr 10945 1idsr 11011 00sr 11012 sqgt0sr 11019 leid 11230 msqgt0 11658 msqge0 11659 recextlem1 11768 recextlem2 11769 recex 11770 div1 11832 cju 12142 2halves 12360 msqznn 12576 xrltnr 13039 xrleid 13071 iccid 13311 m1expeven 14034 sqneg 14040 sqcl 14043 nnsqcl 14053 qsqcl 14055 expubnd 14103 bernneq 14154 faclbnd 14215 faclbnd3 14217 hashfac 14383 leiso 14384 cjmulval 15070 fallrisefac 15950 sin2t 16104 cos2t 16105 divalglem0 16322 divalglem2 16324 gcd0id 16448 lcmid 16538 lcmgcdeq 16541 lcmfsn 16564 isprm5 16636 prslem 18221 pslem 18496 dirref 18525 efmndbasabf 18764 efmndhash 18768 efmndbasfi 18769 efmnd1bas 18785 submefmnd 18787 sgrp2nmndlem4 18820 grpsubid 18921 grp1inv 18945 cntzi 19226 symgbasfi 19276 symg1bas 19288 pgrpsubgsymg 19306 symgextfve 19316 pmtrfinv 19358 psgnsn 19417 ipeq0 21563 matsca2 22323 matbas2 22324 matplusgcell 22336 matsubgcell 22337 mamulid 22344 mamurid 22345 mattposcl 22356 mat1dimelbas 22374 mat1dimscm 22378 mat1dimmul 22379 m1detdiag 22500 mdetdiagid 22503 mdetunilem9 22523 pmatcoe1fsupp 22604 d1mat2pmat 22642 idcn 23160 hausdiag 23548 symgtgp 24009 ustref 24122 ustelimasn 24126 iducn 24186 ismet 24227 isxmet 24228 idnghm 24647 resubmet 24706 xrsxmet 24714 cphnm 25109 tcphnmval 25145 ipcau2 25150 tcphcphlem1 25151 tcphcphlem2 25152 tcphcph 25153 cmssmscld 25266 chordthmlem 26758 slerflex 27691 lrrecpo 27871 subsid 27996 divs1 28130 zsoring 28319 ismot 28498 hmoval 30772 htth 30880 hvsubid 30988 hvnegid 30989 hv2times 31023 hiidrcl 31057 normval 31086 issh2 31171 chjidm 31482 normcan 31538 ho2times 31781 kbpj 31918 lnop0 31928 riesz3i 32024 leoprf 32090 leopsq 32091 cvnref 32253 gtiso 32657 fldextid 33634 prsss 33885 deranglem 35141 elfix2 35880 linedegen 36119 filnetlem2 36355 matunitlindflem2 37599 matunitlindf 37600 ftc1anclem3 37677 prdsbnd2 37777 reheibor 37821 ismgmOLD 37832 opidon2OLD 37836 exidreslem 37859 rngo2 37889 opideq 38313 eldmcoss2 38438 mzpf 42712 acongrep 42956 ttac 43012 mendval 43155 iocinico 43188 iocmbl 43189 seff 44285 sblpnf 44286 sigarid 46843 cnambpcma 47282 2leaddle2 47286 grlicref 48000 clintopval 48192 2arymaptfv 48640 2arymaptfo 48643 itcoval2 48653 itcoval3 48654 resipos 48963 nelsubclem 49056 initoo2 49221 termoo2 49222 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |