| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2130 eqeq12d 2747 rru 3738 dedth2v 4538 dedth3v 4539 dedth4v 4540 disjprsn 4667 opidg 4844 unisng 4877 intsng 4933 isso2i 5561 poinxp 5697 posn 5702 xpid11 5872 dfpo2 6243 predpoirr 6280 predfrirr 6281 f1oprswap 6807 f1o2sn 7075 residpr 7076 f1mpt 7195 f1eqcocnv 7235 isopolem 7279 3xpexg 7685 sqxpexg 7688 poxp 8058 poxp2 8073 poxp3 8080 oe0 8437 oecl 8452 nnmsucr 8540 ecopover 8745 enrefg 8906 php 9116 3xpfi 9205 dffi3 9315 infxpenlem 9904 isfin5 10190 isfin5-2 10282 pwfseqlem4a 10552 pwfseqlem4 10553 pwfseqlem5 10554 pwfseq 10555 nqereu 10820 halfnq 10867 ltsopr 10923 1idsr 10989 00sr 10990 sqgt0sr 10997 leid 11209 msqgt0 11637 msqge0 11638 recextlem1 11747 recextlem2 11748 recex 11749 div1 11811 cju 12121 2halves 12339 msqznn 12555 xrltnr 13018 xrleid 13050 iccid 13290 m1expeven 14016 sqneg 14022 sqcl 14025 nnsqcl 14035 qsqcl 14037 expubnd 14085 bernneq 14136 faclbnd 14197 faclbnd3 14199 hashfac 14365 leiso 14366 cjmulval 15052 fallrisefac 15932 sin2t 16086 cos2t 16087 divalglem0 16304 divalglem2 16306 gcd0id 16430 lcmid 16520 lcmgcdeq 16523 lcmfsn 16546 isprm5 16618 prslem 18203 pslem 18478 dirref 18507 efmndbasabf 18780 efmndhash 18784 efmndbasfi 18785 efmnd1bas 18801 submefmnd 18803 sgrp2nmndlem4 18836 grpsubid 18937 grp1inv 18961 cntzi 19242 symgbasfi 19292 symg1bas 19304 pgrpsubgsymg 19322 symgextfve 19332 pmtrfinv 19374 psgnsn 19433 ipeq0 21576 matsca2 22336 matbas2 22337 matplusgcell 22349 matsubgcell 22350 mamulid 22357 mamurid 22358 mattposcl 22369 mat1dimelbas 22387 mat1dimscm 22391 mat1dimmul 22392 m1detdiag 22513 mdetdiagid 22516 mdetunilem9 22536 pmatcoe1fsupp 22617 d1mat2pmat 22655 idcn 23173 hausdiag 23561 symgtgp 24022 ustref 24135 ustelimasn 24139 iducn 24198 ismet 24239 isxmet 24240 idnghm 24659 resubmet 24718 xrsxmet 24726 cphnm 25121 tcphnmval 25157 ipcau2 25162 tcphcphlem1 25163 tcphcphlem2 25164 tcphcph 25165 cmssmscld 25278 chordthmlem 26770 slerflex 27703 lrrecpo 27885 subsid 28010 divs1 28144 zsoring 28333 ismot 28514 hmoval 30788 htth 30896 hvsubid 31004 hvnegid 31005 hv2times 31039 hiidrcl 31073 normval 31102 issh2 31187 chjidm 31498 normcan 31554 ho2times 31797 kbpj 31934 lnop0 31944 riesz3i 32040 leoprf 32106 leopsq 32107 cvnref 32269 gtiso 32680 fldextid 33670 prsss 33927 fineqvnttrclse 35142 deranglem 35208 elfix2 35944 linedegen 36183 filnetlem2 36419 matunitlindflem2 37663 matunitlindf 37664 ftc1anclem3 37741 prdsbnd2 37841 reheibor 37885 ismgmOLD 37896 opidon2OLD 37900 exidreslem 37923 rngo2 37953 opideq 38377 eldmcoss2 38502 mzpf 42775 acongrep 43019 ttac 43075 mendval 43218 iocinico 43251 iocmbl 43252 seff 44348 sblpnf 44349 sigarid 46902 cnambpcma 47331 2leaddle2 47335 grlicref 48049 clintopval 48241 2arymaptfv 48689 2arymaptfo 48692 itcoval2 48702 itcoval3 48703 resipos 49012 nelsubclem 49105 initoo2 49270 termoo2 49271 setc1onsubc 49640 |
| Copyright terms: Public domain | W3C validator |