![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylancb 599 sylancbr 600 ru0 2127 eqeq12d 2756 rru 3801 dedth2v 4610 dedth3v 4611 dedth4v 4612 disjprsn 4739 opidg 4916 unisng 4949 intsng 5007 isso2i 5644 poinxp 5780 posn 5785 xpid11 5957 dfpo2 6327 predpoirr 6365 predfrirr 6366 f1oprswap 6906 f1o2sn 7176 residpr 7177 f1mpt 7298 f1eqcocnv 7337 isopolem 7381 3xpexg 7787 sqxpexg 7790 poxp 8169 poxp2 8184 poxp3 8191 oe0 8578 oecl 8593 nnmsucr 8681 ecopover 8879 enrefg 9044 php 9273 phpOLD 9285 3xpfi 9388 dffi3 9500 infxpenlem 10082 isfin5 10368 isfin5-2 10460 pwfseqlem4a 10730 pwfseqlem4 10731 pwfseqlem5 10732 pwfseq 10733 nqereu 10998 halfnq 11045 ltsopr 11101 1idsr 11167 00sr 11168 sqgt0sr 11175 leid 11386 msqgt0 11810 msqge0 11811 recextlem1 11920 recextlem2 11921 recex 11922 div1 11984 cju 12289 2halves 12521 msqznn 12725 xrltnr 13182 xrleid 13213 iccid 13452 m1expeven 14160 sqneg 14166 sqcl 14168 nnsqcl 14178 qsqcl 14180 expubnd 14227 bernneq 14278 faclbnd 14339 faclbnd3 14341 hashfac 14507 leiso 14508 cjmulval 15194 fallrisefac 16073 sin2t 16225 cos2t 16226 divalglem0 16441 divalglem2 16443 gcd0id 16565 lcmid 16656 lcmgcdeq 16659 lcmfsn 16682 isprm5 16754 prslem 18368 pslem 18642 dirref 18671 efmndbasabf 18907 efmndhash 18911 efmndbasfi 18912 efmnd1bas 18928 submefmnd 18930 sgrp2nmndlem4 18963 grpsubid 19064 grp1inv 19088 cntzi 19369 symgbasfi 19420 symg1bas 19432 pgrpsubgsymg 19451 symgextfve 19461 pmtrfinv 19503 psgnsn 19562 ipeq0 21679 matsca2 22447 matbas2 22448 matplusgcell 22460 matsubgcell 22461 mamulid 22468 mamurid 22469 mattposcl 22480 mat1dimelbas 22498 mat1dimscm 22502 mat1dimmul 22503 m1detdiag 22624 mdetdiagid 22627 mdetunilem9 22647 pmatcoe1fsupp 22728 d1mat2pmat 22766 idcn 23286 hausdiag 23674 symgtgp 24135 ustref 24248 ustelimasn 24252 iducn 24313 ismet 24354 isxmet 24355 idnghm 24785 resubmet 24843 xrsxmet 24850 cphnm 25246 tcphnmval 25282 ipcau2 25287 tcphcphlem1 25288 tcphcphlem2 25289 tcphcph 25290 cmssmscld 25403 chordthmlem 26893 slerflex 27826 lrrecpo 27992 subsid 28117 divs1 28247 ismot 28561 hmoval 30842 htth 30950 hvsubid 31058 hvnegid 31059 hv2times 31093 hiidrcl 31127 normval 31156 issh2 31241 chjidm 31552 normcan 31608 ho2times 31851 kbpj 31988 lnop0 31998 riesz3i 32094 leoprf 32160 leopsq 32161 cvnref 32323 gtiso 32712 fldextid 33672 prsss 33862 deranglem 35134 elfix2 35868 linedegen 36107 filnetlem2 36345 matunitlindflem2 37577 matunitlindf 37578 ftc1anclem3 37655 prdsbnd2 37755 reheibor 37799 ismgmOLD 37810 opidon2OLD 37814 exidreslem 37837 rngo2 37867 opideq 38299 eldmcoss2 38415 2xp3dxp2ge1d 42198 sn-inelr 42443 mzpf 42692 acongrep 42937 ttac 42993 mendval 43140 iocinico 43173 iocmbl 43174 seff 44278 sblpnf 44279 sigarid 46779 cnambpcma 47209 2leaddle2 47213 grlicref 47829 clintopval 47927 2arymaptfv 48385 2arymaptfo 48388 itcoval2 48398 itcoval3 48399 |
Copyright terms: Public domain | W3C validator |