Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 413 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylancb 600 sylancbr 601 eqeq12d 2755 rru 3715 dedth2v 4522 dedth3v 4523 dedth4v 4524 disjprsn 4651 opidg 4824 unisng 4861 intsng 4917 snex 5355 isso2i 5539 poinxp 5668 posn 5673 xpid11 5844 dfpo2 6203 predpoirr 6240 predfrirr 6241 f1oprswap 6769 f1o2sn 7023 residpr 7024 f1mpt 7143 f1eqcocnv 7182 f1eqcocnvOLD 7183 isopolem 7225 3xpexg 7611 sqxpexg 7614 poxp 7978 oe0 8361 oecl 8376 nnmsucr 8465 ecopover 8619 enrefg 8781 php 9002 phpOLD 9014 3xpfi 9095 dffi3 9199 infxpenlem 9778 isfin5 10064 isfin5-2 10156 fpwwe2lem4 10399 pwfseqlem4a 10426 pwfseqlem4 10427 pwfseqlem5 10428 pwfseq 10429 nqereu 10694 halfnq 10741 ltsopr 10797 1idsr 10863 00sr 10864 sqgt0sr 10871 leid 11080 msqgt0 11504 msqge0 11505 recextlem1 11614 recextlem2 11615 recex 11616 div1 11673 cju 11978 2halves 12210 msqznn 12411 xrltnr 12864 xrleid 12894 iccid 13133 m1expeven 13839 sqneg 13845 sqcl 13847 nnsqcl 13856 qsqcl 13858 expubnd 13904 bernneq 13953 faclbnd 14013 faclbnd3 14015 hashfac 14181 leiso 14182 cjmulval 14865 fallrisefac 15744 sin2t 15895 cos2t 15896 divalglem0 16111 divalglem2 16113 gcd0id 16235 lcmid 16323 lcmgcdeq 16326 lcmfsn 16349 isprm5 16421 prslem 18025 pslem 18299 dirref 18328 efmndbasabf 18520 efmndhash 18524 efmndbasfi 18525 efmnd1bas 18541 submefmnd 18543 sgrp2nmndlem4 18576 grpsubid 18668 grp1inv 18692 cntzi 18944 permsetexOLD 18986 symgbasfi 18995 symg1bas 19007 pgrpsubgsymg 19026 symgextfve 19036 pmtrfinv 19078 psgnsn 19137 lsmidmOLD 19278 ringadd2 19823 ipeq0 20852 matsca2 21578 matbas2 21579 matplusgcell 21591 matsubgcell 21592 mamulid 21599 mamurid 21600 mattposcl 21611 mat1dimelbas 21629 mat1dimscm 21633 mat1dimmul 21634 m1detdiag 21755 mdetdiagid 21758 mdetunilem9 21778 pmatcoe1fsupp 21859 d1mat2pmat 21897 idcn 22417 hausdiag 22805 symgtgp 23266 ustref 23379 ustelimasn 23383 iducn 23444 ismet 23485 isxmet 23486 idnghm 23916 resubmet 23974 xrsxmet 23981 cphnm 24366 tcphnmval 24402 ipcau2 24407 tcphcphlem1 24408 tcphcphlem2 24409 tcphcph 24410 cmssmscld 24523 chordthmlem 25991 ismot 26905 hmoval 29181 htth 29289 hvsubid 29397 hvnegid 29398 hv2times 29432 hiidrcl 29466 normval 29495 issh2 29580 chjidm 29891 normcan 29947 ho2times 30190 kbpj 30327 lnop0 30337 riesz3i 30433 leoprf 30499 leopsq 30500 cvnref 30662 gtiso 31042 fldextid 31743 prsss 31875 deranglem 33137 poxp2 33799 poxp3 33805 slerflex 33975 lrrecpo 34107 elfix2 34215 linedegen 34454 filnetlem2 34577 bj-ru0 35140 matunitlindflem2 35783 matunitlindf 35784 ftc1anclem3 35861 prdsbnd2 35962 reheibor 36006 ismgmOLD 36017 opidon2OLD 36021 exidreslem 36044 rngo2 36074 opideq 36485 eldmcoss2 36584 2xp3dxp2ge1d 40169 sn-inelr 40442 mzpf 40565 acongrep 40809 ttac 40865 mendval 41015 iocinico 41050 iocmbl 41051 seff 41934 sblpnf 41935 sigarid 44385 cnambpcma 44797 2leaddle2 44801 clintopval 45409 2arymaptfv 46008 2arymaptfo 46011 itcoval2 46021 itcoval3 46022 |
Copyright terms: Public domain | W3C validator |