| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2128 eqeq12d 2746 rru 3753 dedth2v 4554 dedth3v 4555 dedth4v 4556 disjprsn 4681 opidg 4859 unisng 4892 intsng 4950 isso2i 5586 poinxp 5722 posn 5727 xpid11 5899 dfpo2 6272 predpoirr 6309 predfrirr 6310 f1oprswap 6847 f1o2sn 7117 residpr 7118 f1mpt 7239 f1eqcocnv 7279 isopolem 7323 3xpexg 7731 sqxpexg 7734 poxp 8110 poxp2 8125 poxp3 8132 oe0 8489 oecl 8504 nnmsucr 8592 ecopover 8797 enrefg 8958 php 9177 3xpfi 9278 dffi3 9389 infxpenlem 9973 isfin5 10259 isfin5-2 10351 pwfseqlem4a 10621 pwfseqlem4 10622 pwfseqlem5 10623 pwfseq 10624 nqereu 10889 halfnq 10936 ltsopr 10992 1idsr 11058 00sr 11059 sqgt0sr 11066 leid 11277 msqgt0 11705 msqge0 11706 recextlem1 11815 recextlem2 11816 recex 11817 div1 11879 cju 12189 2halves 12407 msqznn 12623 xrltnr 13086 xrleid 13118 iccid 13358 m1expeven 14081 sqneg 14087 sqcl 14090 nnsqcl 14100 qsqcl 14102 expubnd 14150 bernneq 14201 faclbnd 14262 faclbnd3 14264 hashfac 14430 leiso 14431 cjmulval 15118 fallrisefac 15998 sin2t 16152 cos2t 16153 divalglem0 16370 divalglem2 16372 gcd0id 16496 lcmid 16586 lcmgcdeq 16589 lcmfsn 16612 isprm5 16684 prslem 18265 pslem 18538 dirref 18567 efmndbasabf 18806 efmndhash 18810 efmndbasfi 18811 efmnd1bas 18827 submefmnd 18829 sgrp2nmndlem4 18862 grpsubid 18963 grp1inv 18987 cntzi 19268 symgbasfi 19316 symg1bas 19328 pgrpsubgsymg 19346 symgextfve 19356 pmtrfinv 19398 psgnsn 19457 ipeq0 21554 matsca2 22314 matbas2 22315 matplusgcell 22327 matsubgcell 22328 mamulid 22335 mamurid 22336 mattposcl 22347 mat1dimelbas 22365 mat1dimscm 22369 mat1dimmul 22370 m1detdiag 22491 mdetdiagid 22494 mdetunilem9 22514 pmatcoe1fsupp 22595 d1mat2pmat 22633 idcn 23151 hausdiag 23539 symgtgp 24000 ustref 24113 ustelimasn 24117 iducn 24177 ismet 24218 isxmet 24219 idnghm 24638 resubmet 24697 xrsxmet 24705 cphnm 25100 tcphnmval 25136 ipcau2 25141 tcphcphlem1 25142 tcphcphlem2 25143 tcphcph 25144 cmssmscld 25257 chordthmlem 26749 slerflex 27682 lrrecpo 27855 subsid 27980 divs1 28114 ismot 28469 hmoval 30746 htth 30854 hvsubid 30962 hvnegid 30963 hv2times 30997 hiidrcl 31031 normval 31060 issh2 31145 chjidm 31456 normcan 31512 ho2times 31755 kbpj 31892 lnop0 31902 riesz3i 31998 leoprf 32064 leopsq 32065 cvnref 32227 gtiso 32631 fldextid 33662 prsss 33913 deranglem 35160 elfix2 35899 linedegen 36138 filnetlem2 36374 matunitlindflem2 37618 matunitlindf 37619 ftc1anclem3 37696 prdsbnd2 37796 reheibor 37840 ismgmOLD 37851 opidon2OLD 37855 exidreslem 37878 rngo2 37908 opideq 38332 eldmcoss2 38457 mzpf 42731 acongrep 42976 ttac 43032 mendval 43175 iocinico 43208 iocmbl 43209 seff 44305 sblpnf 44306 sigarid 46863 cnambpcma 47299 2leaddle2 47303 grlicref 48008 clintopval 48196 2arymaptfv 48644 2arymaptfo 48647 itcoval2 48657 itcoval3 48658 resipos 48967 nelsubclem 49060 initoo2 49225 termoo2 49226 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |