Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylancb 599 sylancbr 600 eqeq12d 2754 rru 3709 dedth2v 4518 dedth3v 4519 dedth4v 4520 disjprsn 4647 opidg 4820 unisng 4857 intsng 4913 snex 5349 isso2i 5529 poinxp 5658 posn 5663 xpid11 5830 dfpo2 6188 predpoirr 6225 predfrirr 6226 f1oprswap 6743 f1o2sn 6996 residpr 6997 f1mpt 7115 f1eqcocnv 7153 f1eqcocnvOLD 7154 isopolem 7196 3xpexg 7580 sqxpexg 7583 poxp 7940 oe0 8314 oecl 8329 nnmsucr 8418 ecopover 8568 enrefg 8727 php 8897 3xpfi 9016 dffi3 9120 infxpenlem 9700 isfin5 9986 isfin5-2 10078 fpwwe2lem4 10321 pwfseqlem4a 10348 pwfseqlem4 10349 pwfseqlem5 10350 pwfseq 10351 nqereu 10616 halfnq 10663 ltsopr 10719 1idsr 10785 00sr 10786 sqgt0sr 10793 leid 11001 msqgt0 11425 msqge0 11426 recextlem1 11535 recextlem2 11536 recex 11537 div1 11594 cju 11899 2halves 12131 msqznn 12332 xrltnr 12784 xrleid 12814 iccid 13053 m1expeven 13758 sqneg 13764 sqcl 13766 nnsqcl 13775 qsqcl 13777 expubnd 13823 bernneq 13872 faclbnd 13932 faclbnd3 13934 hashfac 14100 leiso 14101 cjmulval 14784 fallrisefac 15663 sin2t 15814 cos2t 15815 divalglem0 16030 divalglem2 16032 gcd0id 16154 lcmid 16242 lcmgcdeq 16245 lcmfsn 16268 isprm5 16340 prslem 17931 pslem 18205 dirref 18234 efmndbasabf 18426 efmndhash 18430 efmndbasfi 18431 efmnd1bas 18447 submefmnd 18449 sgrp2nmndlem4 18482 grpsubid 18574 grp1inv 18598 cntzi 18850 permsetexOLD 18892 symgbasfi 18901 symg1bas 18913 pgrpsubgsymg 18932 symgextfve 18942 pmtrfinv 18984 psgnsn 19043 lsmidmOLD 19184 ringadd2 19729 ipeq0 20755 matsca2 21477 matbas2 21478 matplusgcell 21490 matsubgcell 21491 mamulid 21498 mamurid 21499 mattposcl 21510 mat1dimelbas 21528 mat1dimscm 21532 mat1dimmul 21533 m1detdiag 21654 mdetdiagid 21657 mdetunilem9 21677 pmatcoe1fsupp 21758 d1mat2pmat 21796 idcn 22316 hausdiag 22704 symgtgp 23165 ustref 23278 ustelimasn 23282 iducn 23343 ismet 23384 isxmet 23385 idnghm 23813 resubmet 23871 xrsxmet 23878 cphnm 24262 tcphnmval 24298 ipcau2 24303 tcphcphlem1 24304 tcphcphlem2 24305 tcphcph 24306 cmssmscld 24419 chordthmlem 25887 ismot 26800 hmoval 29073 htth 29181 hvsubid 29289 hvnegid 29290 hv2times 29324 hiidrcl 29358 normval 29387 issh2 29472 chjidm 29783 normcan 29839 ho2times 30082 kbpj 30219 lnop0 30229 riesz3i 30325 leoprf 30391 leopsq 30392 cvnref 30554 gtiso 30935 fldextid 31636 prsss 31768 deranglem 33028 poxp2 33717 poxp3 33723 slerflex 33893 lrrecpo 34025 elfix2 34133 linedegen 34372 filnetlem2 34495 bj-ru0 35058 matunitlindflem2 35701 matunitlindf 35702 ftc1anclem3 35779 prdsbnd2 35880 reheibor 35924 ismgmOLD 35935 opidon2OLD 35939 exidreslem 35962 rngo2 35992 opideq 36405 eldmcoss2 36504 2xp3dxp2ge1d 40090 sn-inelr 40356 mzpf 40474 acongrep 40718 ttac 40774 mendval 40924 iocinico 40959 iocmbl 40960 seff 41816 sblpnf 41817 sigarid 44261 cnambpcma 44674 2leaddle2 44678 clintopval 45286 2arymaptfv 45885 2arymaptfo 45888 itcoval2 45898 itcoval3 45899 |
Copyright terms: Public domain | W3C validator |