Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 416 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: sylancb 603 sylancbr 604 eqeq12d 2753 rru 3692 dedth2v 4501 dedth3v 4502 dedth4v 4503 disjprsn 4630 opidg 4803 unisng 4840 intsng 4896 snex 5324 isso2i 5503 poinxp 5629 posn 5634 xpid11 5801 predpoirr 6191 predfrirr 6192 f1oprswap 6704 f1o2sn 6957 residpr 6958 f1mpt 7073 f1eqcocnv 7111 f1eqcocnvOLD 7112 isopolem 7154 3xpexg 7537 sqxpexg 7540 poxp 7895 oe0 8249 oecl 8264 nnmsucr 8353 ecopover 8503 enrefg 8660 php 8830 3xpfi 8943 dffi3 9047 infxpenlem 9627 isfin5 9913 isfin5-2 10005 fpwwe2lem4 10248 pwfseqlem4a 10275 pwfseqlem4 10276 pwfseqlem5 10277 pwfseq 10278 nqereu 10543 halfnq 10590 ltsopr 10646 1idsr 10712 00sr 10713 sqgt0sr 10720 leid 10928 msqgt0 11352 msqge0 11353 recextlem1 11462 recextlem2 11463 recex 11464 div1 11521 cju 11826 2halves 12058 msqznn 12259 xrltnr 12711 xrleid 12741 iccid 12980 m1expeven 13682 sqneg 13688 sqcl 13690 nnsqcl 13699 qsqcl 13701 expubnd 13747 bernneq 13796 faclbnd 13856 faclbnd3 13858 hashfac 14024 leiso 14025 cjmulval 14708 fallrisefac 15587 sin2t 15738 cos2t 15739 divalglem0 15954 divalglem2 15956 gcd0id 16078 lcmid 16166 lcmgcdeq 16169 lcmfsn 16192 isprm5 16264 prslem 17805 pslem 18078 dirref 18107 efmndbasabf 18299 efmndhash 18303 efmndbasfi 18304 efmnd1bas 18320 submefmnd 18322 sgrp2nmndlem4 18355 grpsubid 18447 grp1inv 18471 cntzi 18723 permsetexOLD 18762 symgbasfi 18771 symg1bas 18783 pgrpsubgsymg 18801 symgextfve 18811 pmtrfinv 18853 psgnsn 18912 lsmidmOLD 19053 ringadd2 19593 ipeq0 20600 matsca2 21317 matbas2 21318 matplusgcell 21330 matsubgcell 21331 mamulid 21338 mamurid 21339 mattposcl 21350 mat1dimelbas 21368 mat1dimscm 21372 mat1dimmul 21373 m1detdiag 21494 mdetdiagid 21497 mdetunilem9 21517 pmatcoe1fsupp 21598 d1mat2pmat 21636 idcn 22154 hausdiag 22542 symgtgp 23003 ustref 23116 ustelimasn 23120 iducn 23180 ismet 23221 isxmet 23222 idnghm 23641 resubmet 23699 xrsxmet 23706 cphnm 24090 tcphnmval 24126 ipcau2 24131 tcphcphlem1 24132 tcphcphlem2 24133 tcphcph 24134 cmssmscld 24247 chordthmlem 25715 ismot 26626 hmoval 28891 htth 28999 hvsubid 29107 hvnegid 29108 hv2times 29142 hiidrcl 29176 normval 29205 issh2 29290 chjidm 29601 normcan 29657 ho2times 29900 kbpj 30037 lnop0 30047 riesz3i 30143 leoprf 30209 leopsq 30210 cvnref 30372 gtiso 30753 fldextid 31448 prsss 31580 deranglem 32841 dfpo2 33441 poxp2 33527 poxp3 33533 slerflex 33703 lrrecpo 33835 elfix2 33943 linedegen 34182 filnetlem2 34305 bj-ru0 34868 matunitlindflem2 35511 matunitlindf 35512 ftc1anclem3 35589 prdsbnd2 35690 reheibor 35734 ismgmOLD 35745 opidon2OLD 35749 exidreslem 35772 rngo2 35802 opideq 36215 eldmcoss2 36314 2xp3dxp2ge1d 39884 sn-inelr 40143 mzpf 40261 acongrep 40505 ttac 40561 mendval 40711 iocinico 40746 iocmbl 40747 seff 41600 sblpnf 41601 sigarid 44046 cnambpcma 44459 2leaddle2 44463 clintopval 45071 2arymaptfv 45670 2arymaptfo 45673 itcoval2 45683 itcoval3 45684 |
Copyright terms: Public domain | W3C validator |