| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2127 eqeq12d 2751 rru 3762 dedth2v 4563 dedth3v 4564 dedth4v 4565 disjprsn 4690 opidg 4868 unisng 4901 intsng 4959 isso2i 5598 poinxp 5735 posn 5740 xpid11 5912 dfpo2 6285 predpoirr 6322 predfrirr 6323 f1oprswap 6862 f1o2sn 7132 residpr 7133 f1mpt 7254 f1eqcocnv 7294 isopolem 7338 3xpexg 7746 sqxpexg 7749 poxp 8127 poxp2 8142 poxp3 8149 oe0 8534 oecl 8549 nnmsucr 8637 ecopover 8835 enrefg 8998 php 9221 phpOLD 9231 3xpfi 9332 dffi3 9443 infxpenlem 10027 isfin5 10313 isfin5-2 10405 pwfseqlem4a 10675 pwfseqlem4 10676 pwfseqlem5 10677 pwfseq 10678 nqereu 10943 halfnq 10990 ltsopr 11046 1idsr 11112 00sr 11113 sqgt0sr 11120 leid 11331 msqgt0 11757 msqge0 11758 recextlem1 11867 recextlem2 11868 recex 11869 div1 11931 cju 12236 2halves 12459 msqznn 12675 xrltnr 13135 xrleid 13167 iccid 13407 m1expeven 14127 sqneg 14133 sqcl 14136 nnsqcl 14146 qsqcl 14148 expubnd 14196 bernneq 14247 faclbnd 14308 faclbnd3 14310 hashfac 14476 leiso 14477 cjmulval 15164 fallrisefac 16041 sin2t 16195 cos2t 16196 divalglem0 16412 divalglem2 16414 gcd0id 16538 lcmid 16628 lcmgcdeq 16631 lcmfsn 16654 isprm5 16726 prslem 18309 pslem 18582 dirref 18611 efmndbasabf 18850 efmndhash 18854 efmndbasfi 18855 efmnd1bas 18871 submefmnd 18873 sgrp2nmndlem4 18906 grpsubid 19007 grp1inv 19031 cntzi 19312 symgbasfi 19360 symg1bas 19372 pgrpsubgsymg 19390 symgextfve 19400 pmtrfinv 19442 psgnsn 19501 ipeq0 21598 matsca2 22358 matbas2 22359 matplusgcell 22371 matsubgcell 22372 mamulid 22379 mamurid 22380 mattposcl 22391 mat1dimelbas 22409 mat1dimscm 22413 mat1dimmul 22414 m1detdiag 22535 mdetdiagid 22538 mdetunilem9 22558 pmatcoe1fsupp 22639 d1mat2pmat 22677 idcn 23195 hausdiag 23583 symgtgp 24044 ustref 24157 ustelimasn 24161 iducn 24221 ismet 24262 isxmet 24263 idnghm 24682 resubmet 24741 xrsxmet 24749 cphnm 25145 tcphnmval 25181 ipcau2 25186 tcphcphlem1 25187 tcphcphlem2 25188 tcphcph 25189 cmssmscld 25302 chordthmlem 26794 slerflex 27727 lrrecpo 27900 subsid 28025 divs1 28159 ismot 28514 hmoval 30791 htth 30899 hvsubid 31007 hvnegid 31008 hv2times 31042 hiidrcl 31076 normval 31105 issh2 31190 chjidm 31501 normcan 31557 ho2times 31800 kbpj 31937 lnop0 31947 riesz3i 32043 leoprf 32109 leopsq 32110 cvnref 32272 gtiso 32678 fldextid 33701 prsss 33947 deranglem 35188 elfix2 35922 linedegen 36161 filnetlem2 36397 matunitlindflem2 37641 matunitlindf 37642 ftc1anclem3 37719 prdsbnd2 37819 reheibor 37863 ismgmOLD 37874 opidon2OLD 37878 exidreslem 37901 rngo2 37931 opideq 38361 eldmcoss2 38477 2xp3dxp2ge1d 42254 sn-inelr 42510 mzpf 42759 acongrep 43004 ttac 43060 mendval 43203 iocinico 43236 iocmbl 43237 seff 44333 sblpnf 44334 sigarid 46887 cnambpcma 47323 2leaddle2 47327 grlicref 48017 clintopval 48179 2arymaptfv 48631 2arymaptfo 48634 itcoval2 48644 itcoval3 48645 resipos 48949 nelsubclem 49034 initoo2 49149 termoo2 49150 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |