| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2132 eqeq12d 2749 rru 3734 dedth2v 4539 dedth3v 4540 dedth4v 4541 disjprsn 4668 opidg 4845 unisng 4878 intsng 4935 isso2i 5566 poinxp 5702 posn 5707 xpid11 5878 dfpo2 6250 predpoirr 6287 predfrirr 6288 f1oprswap 6815 f1o2sn 7083 residpr 7084 f1mpt 7203 f1eqcocnv 7243 isopolem 7287 3xpexg 7693 sqxpexg 7696 poxp 8066 poxp2 8081 poxp3 8088 oe0 8445 oecl 8460 nnmsucr 8548 ecopover 8753 enrefg 8915 php 9125 3xpfi 9214 dffi3 9324 infxpenlem 9913 isfin5 10199 isfin5-2 10291 pwfseqlem4a 10561 pwfseqlem4 10562 pwfseqlem5 10563 pwfseq 10564 nqereu 10829 halfnq 10876 ltsopr 10932 1idsr 10998 00sr 10999 sqgt0sr 11006 leid 11218 msqgt0 11646 msqge0 11647 recextlem1 11756 recextlem2 11757 recex 11758 div1 11820 cju 12130 2halves 12348 msqznn 12563 xrltnr 13022 xrleid 13054 iccid 13294 m1expeven 14020 sqneg 14026 sqcl 14029 nnsqcl 14039 qsqcl 14041 expubnd 14089 bernneq 14140 faclbnd 14201 faclbnd3 14203 hashfac 14369 leiso 14370 cjmulval 15056 fallrisefac 15936 sin2t 16090 cos2t 16091 divalglem0 16308 divalglem2 16310 gcd0id 16434 lcmid 16524 lcmgcdeq 16527 lcmfsn 16550 isprm5 16622 prslem 18207 pslem 18482 dirref 18511 efmndbasabf 18784 efmndhash 18788 efmndbasfi 18789 efmnd1bas 18805 submefmnd 18807 sgrp2nmndlem4 18840 grpsubid 18941 grp1inv 18965 cntzi 19245 symgbasfi 19295 symg1bas 19307 pgrpsubgsymg 19325 symgextfve 19335 pmtrfinv 19377 psgnsn 19436 ipeq0 21579 matsca2 22338 matbas2 22339 matplusgcell 22351 matsubgcell 22352 mamulid 22359 mamurid 22360 mattposcl 22371 mat1dimelbas 22389 mat1dimscm 22393 mat1dimmul 22394 m1detdiag 22515 mdetdiagid 22518 mdetunilem9 22538 pmatcoe1fsupp 22619 d1mat2pmat 22657 idcn 23175 hausdiag 23563 symgtgp 24024 ustref 24137 ustelimasn 24141 iducn 24200 ismet 24241 isxmet 24242 idnghm 24661 resubmet 24720 xrsxmet 24728 cphnm 25123 tcphnmval 25159 ipcau2 25164 tcphcphlem1 25165 tcphcphlem2 25166 tcphcph 25167 cmssmscld 25280 chordthmlem 26772 slerflex 27705 lrrecpo 27887 subsid 28012 divs1 28146 zsoring 28335 ismot 28516 hmoval 30794 htth 30902 hvsubid 31010 hvnegid 31011 hv2times 31045 hiidrcl 31079 normval 31108 issh2 31193 chjidm 31504 normcan 31560 ho2times 31803 kbpj 31940 lnop0 31950 riesz3i 32046 leoprf 32112 leopsq 32113 cvnref 32275 gtiso 32688 fldextid 33695 prsss 33952 fineqvnttrclse 35167 deranglem 35233 elfix2 35969 linedegen 36210 filnetlem2 36446 matunitlindflem2 37680 matunitlindf 37681 ftc1anclem3 37758 prdsbnd2 37858 reheibor 37902 ismgmOLD 37913 opidon2OLD 37917 exidreslem 37940 rngo2 37970 opideq 38398 eldmcoss2 38584 mzpf 42856 acongrep 43100 ttac 43156 mendval 43299 iocinico 43332 iocmbl 43333 seff 44429 sblpnf 44430 sigarid 46983 cnambpcma 47421 2leaddle2 47425 grlicref 48139 clintopval 48331 2arymaptfv 48779 2arymaptfo 48782 itcoval2 48792 itcoval3 48793 resipos 49102 nelsubclem 49195 initoo2 49360 termoo2 49361 setc1onsubc 49730 |
| Copyright terms: Public domain | W3C validator |