![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 414 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: sylancb 601 sylancbr 602 eqeq12d 2749 rru 3776 dedth2v 4591 dedth3v 4592 dedth4v 4593 disjprsn 4719 opidg 4893 unisng 4930 intsng 4990 isso2i 5624 poinxp 5757 posn 5762 xpid11 5932 dfpo2 6296 predpoirr 6335 predfrirr 6336 f1oprswap 6878 f1o2sn 7140 residpr 7141 f1mpt 7260 f1eqcocnv 7299 f1eqcocnvOLD 7300 isopolem 7342 3xpexg 7739 sqxpexg 7742 poxp 8114 poxp2 8129 poxp3 8136 oe0 8522 oecl 8537 nnmsucr 8625 ecopover 8815 enrefg 8980 php 9210 phpOLD 9222 3xpfi 9319 dffi3 9426 infxpenlem 10008 isfin5 10294 isfin5-2 10386 fpwwe2lem4 10629 pwfseqlem4a 10656 pwfseqlem4 10657 pwfseqlem5 10658 pwfseq 10659 nqereu 10924 halfnq 10971 ltsopr 11027 1idsr 11093 00sr 11094 sqgt0sr 11101 leid 11310 msqgt0 11734 msqge0 11735 recextlem1 11844 recextlem2 11845 recex 11846 div1 11903 cju 12208 2halves 12440 msqznn 12644 xrltnr 13099 xrleid 13130 iccid 13369 m1expeven 14075 sqneg 14081 sqcl 14083 nnsqcl 14093 qsqcl 14095 expubnd 14142 bernneq 14192 faclbnd 14250 faclbnd3 14252 hashfac 14419 leiso 14420 cjmulval 15092 fallrisefac 15969 sin2t 16120 cos2t 16121 divalglem0 16336 divalglem2 16338 gcd0id 16460 lcmid 16546 lcmgcdeq 16549 lcmfsn 16572 isprm5 16644 prslem 18251 pslem 18525 dirref 18554 efmndbasabf 18753 efmndhash 18757 efmndbasfi 18758 efmnd1bas 18774 submefmnd 18776 sgrp2nmndlem4 18809 grpsubid 18907 grp1inv 18931 cntzi 19193 permsetexOLD 19237 symgbasfi 19246 symg1bas 19258 pgrpsubgsymg 19277 symgextfve 19287 pmtrfinv 19329 psgnsn 19388 ipeq0 21191 matsca2 21922 matbas2 21923 matplusgcell 21935 matsubgcell 21936 mamulid 21943 mamurid 21944 mattposcl 21955 mat1dimelbas 21973 mat1dimscm 21977 mat1dimmul 21978 m1detdiag 22099 mdetdiagid 22102 mdetunilem9 22122 pmatcoe1fsupp 22203 d1mat2pmat 22241 idcn 22761 hausdiag 23149 symgtgp 23610 ustref 23723 ustelimasn 23727 iducn 23788 ismet 23829 isxmet 23830 idnghm 24260 resubmet 24318 xrsxmet 24325 cphnm 24710 tcphnmval 24746 ipcau2 24751 tcphcphlem1 24752 tcphcphlem2 24753 tcphcph 24754 cmssmscld 24867 chordthmlem 26337 slerflex 27266 lrrecpo 27425 subsid 27537 divs1 27651 ismot 27786 hmoval 30063 htth 30171 hvsubid 30279 hvnegid 30280 hv2times 30314 hiidrcl 30348 normval 30377 issh2 30462 chjidm 30773 normcan 30829 ho2times 31072 kbpj 31209 lnop0 31219 riesz3i 31315 leoprf 31381 leopsq 31382 cvnref 31544 gtiso 31922 fldextid 32738 prsss 32896 deranglem 34157 elfix2 34876 linedegen 35115 filnetlem2 35264 bj-ru0 35823 matunitlindflem2 36485 matunitlindf 36486 ftc1anclem3 36563 prdsbnd2 36663 reheibor 36707 ismgmOLD 36718 opidon2OLD 36722 exidreslem 36745 rngo2 36775 opideq 37212 eldmcoss2 37329 2xp3dxp2ge1d 41022 sn-inelr 41338 mzpf 41474 acongrep 41719 ttac 41775 mendval 41925 iocinico 41961 iocmbl 41962 seff 43068 sblpnf 43069 sigarid 45574 cnambpcma 46002 2leaddle2 46006 clintopval 46614 2arymaptfv 47337 2arymaptfo 47340 itcoval2 47350 itcoval3 47351 |
Copyright terms: Public domain | W3C validator |