| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2128 eqeq12d 2745 rru 3750 dedth2v 4551 dedth3v 4552 dedth4v 4553 disjprsn 4678 opidg 4856 unisng 4889 intsng 4947 isso2i 5583 poinxp 5719 posn 5724 xpid11 5896 dfpo2 6269 predpoirr 6306 predfrirr 6307 f1oprswap 6844 f1o2sn 7114 residpr 7115 f1mpt 7236 f1eqcocnv 7276 isopolem 7320 3xpexg 7728 sqxpexg 7731 poxp 8107 poxp2 8122 poxp3 8129 oe0 8486 oecl 8501 nnmsucr 8589 ecopover 8794 enrefg 8955 php 9171 3xpfi 9271 dffi3 9382 infxpenlem 9966 isfin5 10252 isfin5-2 10344 pwfseqlem4a 10614 pwfseqlem4 10615 pwfseqlem5 10616 pwfseq 10617 nqereu 10882 halfnq 10929 ltsopr 10985 1idsr 11051 00sr 11052 sqgt0sr 11059 leid 11270 msqgt0 11698 msqge0 11699 recextlem1 11808 recextlem2 11809 recex 11810 div1 11872 cju 12182 2halves 12400 msqznn 12616 xrltnr 13079 xrleid 13111 iccid 13351 m1expeven 14074 sqneg 14080 sqcl 14083 nnsqcl 14093 qsqcl 14095 expubnd 14143 bernneq 14194 faclbnd 14255 faclbnd3 14257 hashfac 14423 leiso 14424 cjmulval 15111 fallrisefac 15991 sin2t 16145 cos2t 16146 divalglem0 16363 divalglem2 16365 gcd0id 16489 lcmid 16579 lcmgcdeq 16582 lcmfsn 16605 isprm5 16677 prslem 18258 pslem 18531 dirref 18560 efmndbasabf 18799 efmndhash 18803 efmndbasfi 18804 efmnd1bas 18820 submefmnd 18822 sgrp2nmndlem4 18855 grpsubid 18956 grp1inv 18980 cntzi 19261 symgbasfi 19309 symg1bas 19321 pgrpsubgsymg 19339 symgextfve 19349 pmtrfinv 19391 psgnsn 19450 ipeq0 21547 matsca2 22307 matbas2 22308 matplusgcell 22320 matsubgcell 22321 mamulid 22328 mamurid 22329 mattposcl 22340 mat1dimelbas 22358 mat1dimscm 22362 mat1dimmul 22363 m1detdiag 22484 mdetdiagid 22487 mdetunilem9 22507 pmatcoe1fsupp 22588 d1mat2pmat 22626 idcn 23144 hausdiag 23532 symgtgp 23993 ustref 24106 ustelimasn 24110 iducn 24170 ismet 24211 isxmet 24212 idnghm 24631 resubmet 24690 xrsxmet 24698 cphnm 25093 tcphnmval 25129 ipcau2 25134 tcphcphlem1 25135 tcphcphlem2 25136 tcphcph 25137 cmssmscld 25250 chordthmlem 26742 slerflex 27675 lrrecpo 27848 subsid 27973 divs1 28107 ismot 28462 hmoval 30739 htth 30847 hvsubid 30955 hvnegid 30956 hv2times 30990 hiidrcl 31024 normval 31053 issh2 31138 chjidm 31449 normcan 31505 ho2times 31748 kbpj 31885 lnop0 31895 riesz3i 31991 leoprf 32057 leopsq 32058 cvnref 32220 gtiso 32624 fldextid 33655 prsss 33906 deranglem 35153 elfix2 35892 linedegen 36131 filnetlem2 36367 matunitlindflem2 37611 matunitlindf 37612 ftc1anclem3 37689 prdsbnd2 37789 reheibor 37833 ismgmOLD 37844 opidon2OLD 37848 exidreslem 37871 rngo2 37901 opideq 38325 eldmcoss2 38450 mzpf 42724 acongrep 42969 ttac 43025 mendval 43168 iocinico 43201 iocmbl 43202 seff 44298 sblpnf 44299 sigarid 46856 cnambpcma 47295 2leaddle2 47299 grlicref 48004 clintopval 48192 2arymaptfv 48640 2arymaptfo 48643 itcoval2 48653 itcoval3 48654 resipos 48963 nelsubclem 49056 initoo2 49221 termoo2 49222 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |