![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2124 eqeq12d 2750 rru 3787 dedth2v 4592 dedth3v 4593 dedth4v 4594 disjprsn 4718 opidg 4896 unisng 4929 intsng 4987 isso2i 5632 poinxp 5768 posn 5773 xpid11 5945 dfpo2 6317 predpoirr 6355 predfrirr 6356 f1oprswap 6892 f1o2sn 7161 residpr 7162 f1mpt 7280 f1eqcocnv 7320 isopolem 7364 3xpexg 7770 sqxpexg 7773 poxp 8151 poxp2 8166 poxp3 8173 oe0 8558 oecl 8573 nnmsucr 8661 ecopover 8859 enrefg 9022 php 9244 phpOLD 9256 3xpfi 9357 dffi3 9468 infxpenlem 10050 isfin5 10336 isfin5-2 10428 pwfseqlem4a 10698 pwfseqlem4 10699 pwfseqlem5 10700 pwfseq 10701 nqereu 10966 halfnq 11013 ltsopr 11069 1idsr 11135 00sr 11136 sqgt0sr 11143 leid 11354 msqgt0 11780 msqge0 11781 recextlem1 11890 recextlem2 11891 recex 11892 div1 11954 cju 12259 2halves 12491 msqznn 12697 xrltnr 13158 xrleid 13189 iccid 13428 m1expeven 14146 sqneg 14152 sqcl 14154 nnsqcl 14164 qsqcl 14166 expubnd 14213 bernneq 14264 faclbnd 14325 faclbnd3 14327 hashfac 14493 leiso 14494 cjmulval 15180 fallrisefac 16057 sin2t 16209 cos2t 16210 divalglem0 16426 divalglem2 16428 gcd0id 16552 lcmid 16642 lcmgcdeq 16645 lcmfsn 16668 isprm5 16740 prslem 18354 pslem 18629 dirref 18658 efmndbasabf 18897 efmndhash 18901 efmndbasfi 18902 efmnd1bas 18918 submefmnd 18920 sgrp2nmndlem4 18953 grpsubid 19054 grp1inv 19078 cntzi 19359 symgbasfi 19410 symg1bas 19422 pgrpsubgsymg 19441 symgextfve 19451 pmtrfinv 19493 psgnsn 19552 ipeq0 21673 matsca2 22441 matbas2 22442 matplusgcell 22454 matsubgcell 22455 mamulid 22462 mamurid 22463 mattposcl 22474 mat1dimelbas 22492 mat1dimscm 22496 mat1dimmul 22497 m1detdiag 22618 mdetdiagid 22621 mdetunilem9 22641 pmatcoe1fsupp 22722 d1mat2pmat 22760 idcn 23280 hausdiag 23668 symgtgp 24129 ustref 24242 ustelimasn 24246 iducn 24307 ismet 24348 isxmet 24349 idnghm 24779 resubmet 24837 xrsxmet 24844 cphnm 25240 tcphnmval 25276 ipcau2 25281 tcphcphlem1 25282 tcphcphlem2 25283 tcphcph 25284 cmssmscld 25397 chordthmlem 26889 slerflex 27822 lrrecpo 27988 subsid 28113 divs1 28243 ismot 28557 hmoval 30838 htth 30946 hvsubid 31054 hvnegid 31055 hv2times 31089 hiidrcl 31123 normval 31152 issh2 31237 chjidm 31548 normcan 31604 ho2times 31847 kbpj 31984 lnop0 31994 riesz3i 32090 leoprf 32156 leopsq 32157 cvnref 32319 gtiso 32715 fldextid 33686 prsss 33876 deranglem 35150 elfix2 35885 linedegen 36124 filnetlem2 36361 matunitlindflem2 37603 matunitlindf 37604 ftc1anclem3 37681 prdsbnd2 37781 reheibor 37825 ismgmOLD 37836 opidon2OLD 37840 exidreslem 37863 rngo2 37893 opideq 38324 eldmcoss2 38440 2xp3dxp2ge1d 42222 sn-inelr 42473 mzpf 42723 acongrep 42968 ttac 43024 mendval 43167 iocinico 43200 iocmbl 43201 seff 44304 sblpnf 44305 sigarid 46813 cnambpcma 47243 2leaddle2 47247 grlicref 47907 clintopval 48047 2arymaptfv 48500 2arymaptfo 48503 itcoval2 48513 itcoval3 48514 |
Copyright terms: Public domain | W3C validator |