| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidms | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 52 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 sylancbr 601 ru0 2128 eqeq12d 2745 rru 3747 dedth2v 4547 dedth3v 4548 dedth4v 4549 disjprsn 4674 opidg 4852 unisng 4885 intsng 4943 isso2i 5576 poinxp 5712 posn 5717 xpid11 5885 dfpo2 6257 predpoirr 6294 predfrirr 6295 f1oprswap 6826 f1o2sn 7096 residpr 7097 f1mpt 7218 f1eqcocnv 7258 isopolem 7302 3xpexg 7708 sqxpexg 7711 poxp 8084 poxp2 8099 poxp3 8106 oe0 8463 oecl 8478 nnmsucr 8566 ecopover 8771 enrefg 8932 php 9148 3xpfi 9247 dffi3 9358 infxpenlem 9942 isfin5 10228 isfin5-2 10320 pwfseqlem4a 10590 pwfseqlem4 10591 pwfseqlem5 10592 pwfseq 10593 nqereu 10858 halfnq 10905 ltsopr 10961 1idsr 11027 00sr 11028 sqgt0sr 11035 leid 11246 msqgt0 11674 msqge0 11675 recextlem1 11784 recextlem2 11785 recex 11786 div1 11848 cju 12158 2halves 12376 msqznn 12592 xrltnr 13055 xrleid 13087 iccid 13327 m1expeven 14050 sqneg 14056 sqcl 14059 nnsqcl 14069 qsqcl 14071 expubnd 14119 bernneq 14170 faclbnd 14231 faclbnd3 14233 hashfac 14399 leiso 14400 cjmulval 15087 fallrisefac 15967 sin2t 16121 cos2t 16122 divalglem0 16339 divalglem2 16341 gcd0id 16465 lcmid 16555 lcmgcdeq 16558 lcmfsn 16581 isprm5 16653 prslem 18234 pslem 18507 dirref 18536 efmndbasabf 18775 efmndhash 18779 efmndbasfi 18780 efmnd1bas 18796 submefmnd 18798 sgrp2nmndlem4 18831 grpsubid 18932 grp1inv 18956 cntzi 19237 symgbasfi 19285 symg1bas 19297 pgrpsubgsymg 19315 symgextfve 19325 pmtrfinv 19367 psgnsn 19426 ipeq0 21523 matsca2 22283 matbas2 22284 matplusgcell 22296 matsubgcell 22297 mamulid 22304 mamurid 22305 mattposcl 22316 mat1dimelbas 22334 mat1dimscm 22338 mat1dimmul 22339 m1detdiag 22460 mdetdiagid 22463 mdetunilem9 22483 pmatcoe1fsupp 22564 d1mat2pmat 22602 idcn 23120 hausdiag 23508 symgtgp 23969 ustref 24082 ustelimasn 24086 iducn 24146 ismet 24187 isxmet 24188 idnghm 24607 resubmet 24666 xrsxmet 24674 cphnm 25069 tcphnmval 25105 ipcau2 25110 tcphcphlem1 25111 tcphcphlem2 25112 tcphcph 25113 cmssmscld 25226 chordthmlem 26718 slerflex 27651 lrrecpo 27824 subsid 27949 divs1 28083 ismot 28438 hmoval 30712 htth 30820 hvsubid 30928 hvnegid 30929 hv2times 30963 hiidrcl 30997 normval 31026 issh2 31111 chjidm 31422 normcan 31478 ho2times 31721 kbpj 31858 lnop0 31868 riesz3i 31964 leoprf 32030 leopsq 32031 cvnref 32193 gtiso 32597 fldextid 33628 prsss 33879 deranglem 35126 elfix2 35865 linedegen 36104 filnetlem2 36340 matunitlindflem2 37584 matunitlindf 37585 ftc1anclem3 37662 prdsbnd2 37762 reheibor 37806 ismgmOLD 37817 opidon2OLD 37821 exidreslem 37844 rngo2 37874 opideq 38298 eldmcoss2 38423 mzpf 42697 acongrep 42942 ttac 42998 mendval 43141 iocinico 43174 iocmbl 43175 seff 44271 sblpnf 44272 sigarid 46829 cnambpcma 47268 2leaddle2 47272 grlicref 47977 clintopval 48165 2arymaptfv 48613 2arymaptfo 48616 itcoval2 48626 itcoval3 48627 resipos 48936 nelsubclem 49029 initoo2 49194 termoo2 49195 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |