![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anidmdbi 565 anandi 676 anandir 677 3anidm 1103 truantru 1570 falanfal 1573 nic-axALT 1671 inidm 4235 2reu4lem 4528 opcom 5511 poirr 5609 asymref2 6140 xp11 6197 fununi 6643 brprcneu 6897 brprcneuALT 6898 f13dfv 7294 erinxp 8830 dom2lem 9031 pssnn 9207 djuinf 10227 dmaddpi 10928 dmmulpi 10929 gcddvds 16537 iscatd2 17726 dfiso2 17820 isnsg2 19187 eqger 19209 gaorber 19339 efgcpbllemb 19788 xmeter 24459 caucfil 25331 tgcgr4 28554 axcontlem5 28998 cplgr3v 29467 erclwwlkref 30049 clwwlkn2 30073 erclwwlknref 30098 frgr3v 30304 numclwlk1lem1 30398 disjunsn 32614 bnj594 34905 subfaclefac 35161 isbasisrelowllem1 37338 isbasisrelowllem2 37339 inixp 37715 opideq 38325 cdlemg33b 40690 eelT11 44705 uunT11 44794 uunT11p1 44795 uunT11p2 44796 uun111 44803 |
Copyright terms: Public domain | W3C validator |