| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidmdbi 565 anandi 676 anandir 677 3anidm 1103 truantru 1573 falanfal 1576 nic-axALT 1674 inidm 4190 2reu4lem 4485 opcom 5461 poirr 5558 asymref2 6090 xp11 6148 fununi 6591 brprcneu 6848 brprcneuALT 6849 f13dfv 7249 erinxp 8764 dom2lem 8963 pssnn 9132 djuinf 10142 dmaddpi 10843 dmmulpi 10844 gcddvds 16473 iscatd2 17642 dfiso2 17734 isnsg2 19088 eqger 19110 gaorber 19240 efgcpbllemb 19685 xmeter 24321 caucfil 25183 tgcgr4 28458 axcontlem5 28895 cplgr3v 29362 erclwwlkref 29949 clwwlkn2 29973 erclwwlknref 29998 frgr3v 30204 numclwlk1lem1 30298 disjunsn 32523 bnj594 34902 subfaclefac 35163 isbasisrelowllem1 37343 isbasisrelowllem2 37344 inixp 37722 opideq 38325 cdlemg33b 40701 eelT11 44696 uunT11 44785 uunT11p1 44786 uunT11p2 44787 uun111 44794 |
| Copyright terms: Public domain | W3C validator |