Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anidmdbi 565 anandi 672 anandir 673 3anidm 1102 truantru 1574 falanfal 1577 nic-axALT 1680 inidm 4157 2reu4lem 4461 opcom 5417 poirr 5514 asymref2 6019 xp11 6075 fununi 6505 brprcneu 6759 fvprc 6760 f13dfv 7140 erinxp 8554 dom2lem 8751 pssnn 8916 pssnnOLD 9001 djuinf 9928 dmaddpi 10630 dmmulpi 10631 gcddvds 16191 iscatd2 17371 dfiso2 17465 isnsg2 18765 eqger 18787 gaorber 18895 efgcpbllemb 19342 xmeter 23567 caucfil 24428 tgcgr4 26873 axcontlem5 27317 cplgr3v 27783 erclwwlkref 28363 clwwlkn2 28387 erclwwlknref 28412 frgr3v 28618 numclwlk1lem1 28712 disjunsn 30912 bnj594 32871 subfaclefac 33117 isbasisrelowllem1 35505 isbasisrelowllem2 35506 inixp 35865 opideq 36457 cdlemg33b 38700 eelT11 42280 uunT11 42369 uunT11p1 42370 uunT11p2 42371 uun111 42378 |
Copyright terms: Public domain | W3C validator |