| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidmdbi 565 anandi 676 anandir 677 3anidm 1103 truantru 1573 falanfal 1576 nic-axALT 1674 inidm 4186 2reu4lem 4481 opcom 5456 poirr 5551 asymref2 6078 xp11 6136 fununi 6575 brprcneu 6830 brprcneuALT 6831 f13dfv 7231 erinxp 8741 dom2lem 8940 pssnn 9109 djuinf 10118 dmaddpi 10819 dmmulpi 10820 gcddvds 16449 iscatd2 17622 dfiso2 17714 isnsg2 19070 eqger 19092 gaorber 19222 efgcpbllemb 19669 xmeter 24354 caucfil 25216 tgcgr4 28511 axcontlem5 28948 cplgr3v 29415 erclwwlkref 29999 clwwlkn2 30023 erclwwlknref 30048 frgr3v 30254 numclwlk1lem1 30348 disjunsn 32573 bnj594 34895 subfaclefac 35156 isbasisrelowllem1 37336 isbasisrelowllem2 37337 inixp 37715 opideq 38318 cdlemg33b 40694 eelT11 44689 uunT11 44778 uunT11p1 44779 uunT11p2 44780 uun111 44787 |
| Copyright terms: Public domain | W3C validator |