Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 567 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 227 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: anidmdbi 569 anandi 676 anandir 677 3anidm 1106 truantru 1576 falanfal 1579 nic-axALT 1682 inidm 4133 2reu4lem 4437 opcom 5384 poirr 5480 asymref2 5982 xp11 6038 fununi 6455 brprcneu 6708 fvprc 6709 f13dfv 7085 erinxp 8473 dom2lem 8668 pssnn 8846 pssnnOLD 8895 djuinf 9802 dmaddpi 10504 dmmulpi 10505 gcddvds 16062 iscatd2 17184 dfiso2 17277 isnsg2 18572 eqger 18594 gaorber 18702 efgcpbllemb 19145 xmeter 23331 caucfil 24180 tgcgr4 26622 axcontlem5 27059 cplgr3v 27523 erclwwlkref 28103 clwwlkn2 28127 erclwwlknref 28152 frgr3v 28358 numclwlk1lem1 28452 disjunsn 30652 bnj594 32605 subfaclefac 32851 isbasisrelowllem1 35263 isbasisrelowllem2 35264 inixp 35623 opideq 36215 cdlemg33b 38458 eelT11 42000 uunT11 42089 uunT11p1 42090 uunT11p2 42091 uun111 42098 |
Copyright terms: Public domain | W3C validator |