| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidmdbi 565 anandi 676 anandir 677 3anidm 1103 truantru 1573 falanfal 1576 nic-axALT 1674 inidm 4193 2reu4lem 4488 opcom 5464 poirr 5561 asymref2 6093 xp11 6151 fununi 6594 brprcneu 6851 brprcneuALT 6852 f13dfv 7252 erinxp 8767 dom2lem 8966 pssnn 9138 djuinf 10149 dmaddpi 10850 dmmulpi 10851 gcddvds 16480 iscatd2 17649 dfiso2 17741 isnsg2 19095 eqger 19117 gaorber 19247 efgcpbllemb 19692 xmeter 24328 caucfil 25190 tgcgr4 28465 axcontlem5 28902 cplgr3v 29369 erclwwlkref 29956 clwwlkn2 29980 erclwwlknref 30005 frgr3v 30211 numclwlk1lem1 30305 disjunsn 32530 bnj594 34909 subfaclefac 35170 isbasisrelowllem1 37350 isbasisrelowllem2 37351 inixp 37729 opideq 38332 cdlemg33b 40708 eelT11 44703 uunT11 44792 uunT11p1 44793 uunT11p2 44794 uun111 44801 |
| Copyright terms: Public domain | W3C validator |