![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 564 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 225 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: anidmdbi 566 anandi 672 anandir 673 3anidm 1095 truantru 1553 falanfal 1556 nic-axALT 1654 inidm 4110 2reu4lem 4373 opcom 5275 poirr 5365 asymref2 5845 xp11 5900 fununi 6291 brprcneu 6522 f13dfv 6887 erinxp 8212 dom2lem 8387 pssnn 8572 djuinf 9449 dmaddpi 10147 dmmulpi 10148 gcddvds 15673 iscatd2 16769 dfiso2 16859 isnsg2 18051 eqger 18071 gaorber 18167 efgcpbllemb 18596 xmeter 22714 caucfil 23557 tgcgr4 25987 axcontlem5 26425 cplgr3v 26888 erclwwlkref 27473 clwwlkn2 27497 erclwwlknref 27523 frgr3v 27734 numclwlk1lem1 27828 disjunsn 30010 bnj594 31756 subfaclefac 31987 isbasisrelowllem1 34113 isbasisrelowllem2 34114 inixp 34481 opideq 35082 cdlemg33b 37324 eelT11 40532 uunT11 40621 uunT11p1 40622 uunT11p2 40623 uun111 40630 |
Copyright terms: Public domain | W3C validator |