![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 565 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anidmdbi 567 anandi 675 anandir 676 3anidm 1105 truantru 1575 falanfal 1578 nic-axALT 1677 inidm 4219 2reu4lem 4526 opcom 5502 poirr 5601 asymref2 6119 xp11 6175 fununi 6624 brprcneu 6882 brprcneuALT 6883 f13dfv 7272 erinxp 8785 dom2lem 8988 pssnn 9168 pssnnOLD 9265 djuinf 10183 dmaddpi 10885 dmmulpi 10886 gcddvds 16444 iscatd2 17625 dfiso2 17719 isnsg2 19036 eqger 19058 gaorber 19172 efgcpbllemb 19623 xmeter 23939 caucfil 24800 tgcgr4 27782 axcontlem5 28226 cplgr3v 28692 erclwwlkref 29273 clwwlkn2 29297 erclwwlknref 29322 frgr3v 29528 numclwlk1lem1 29622 disjunsn 31825 bnj594 33923 subfaclefac 34167 isbasisrelowllem1 36236 isbasisrelowllem2 36237 inixp 36596 opideq 37212 cdlemg33b 39578 eelT11 43468 uunT11 43557 uunT11p1 43558 uunT11p2 43559 uun111 43566 |
Copyright terms: Public domain | W3C validator |