![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anidmdbi 565 anandi 675 anandir 676 3anidm 1104 truantru 1570 falanfal 1573 nic-axALT 1672 inidm 4248 2reu4lem 4545 opcom 5520 poirr 5620 asymref2 6149 xp11 6206 fununi 6653 brprcneu 6910 brprcneuALT 6911 f13dfv 7310 erinxp 8849 dom2lem 9052 pssnn 9234 djuinf 10258 dmaddpi 10959 dmmulpi 10960 gcddvds 16549 iscatd2 17739 dfiso2 17833 isnsg2 19196 eqger 19218 gaorber 19348 efgcpbllemb 19797 xmeter 24464 caucfil 25336 tgcgr4 28557 axcontlem5 29001 cplgr3v 29470 erclwwlkref 30052 clwwlkn2 30076 erclwwlknref 30101 frgr3v 30307 numclwlk1lem1 30401 disjunsn 32616 bnj594 34888 subfaclefac 35144 isbasisrelowllem1 37321 isbasisrelowllem2 37322 inixp 37688 opideq 38299 cdlemg33b 40664 eelT11 44678 uunT11 44767 uunT11p1 44768 uunT11p2 44769 uun111 44776 |
Copyright terms: Public domain | W3C validator |