Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 564 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anidmdbi 566 anandi 673 anandir 674 3anidm 1103 truantru 1573 falanfal 1576 nic-axALT 1675 inidm 4163 2reu4lem 4468 opcom 5434 poirr 5533 asymref2 6044 xp11 6100 fununi 6545 brprcneu 6801 brprcneuALT 6802 f13dfv 7185 erinxp 8628 dom2lem 8830 pssnn 9010 pssnnOLD 9107 djuinf 10017 dmaddpi 10719 dmmulpi 10720 gcddvds 16282 iscatd2 17460 dfiso2 17554 isnsg2 18853 eqger 18875 gaorber 18983 efgcpbllemb 19429 xmeter 23658 caucfil 24519 tgcgr4 27001 axcontlem5 27445 cplgr3v 27911 erclwwlkref 28493 clwwlkn2 28517 erclwwlknref 28542 frgr3v 28748 numclwlk1lem1 28842 disjunsn 31041 bnj594 32997 subfaclefac 33243 isbasisrelowllem1 35582 isbasisrelowllem2 35583 inixp 35942 opideq 36560 cdlemg33b 38926 eelT11 42548 uunT11 42637 uunT11p1 42638 uunT11p2 42639 uun111 42646 |
Copyright terms: Public domain | W3C validator |