![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 564 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anidmdbi 566 anandi 674 anandir 675 3anidm 1104 truantru 1574 falanfal 1577 nic-axALT 1676 inidm 4217 2reu4lem 4524 opcom 5500 poirr 5599 asymref2 6115 xp11 6171 fununi 6620 brprcneu 6878 brprcneuALT 6879 f13dfv 7268 erinxp 8781 dom2lem 8984 pssnn 9164 pssnnOLD 9261 djuinf 10179 dmaddpi 10881 dmmulpi 10882 gcddvds 16440 iscatd2 17621 dfiso2 17715 isnsg2 19030 eqger 19052 gaorber 19166 efgcpbllemb 19617 xmeter 23930 caucfil 24791 tgcgr4 27771 axcontlem5 28215 cplgr3v 28681 erclwwlkref 29262 clwwlkn2 29286 erclwwlknref 29311 frgr3v 29517 numclwlk1lem1 29611 disjunsn 31812 bnj594 33911 subfaclefac 34155 isbasisrelowllem1 36224 isbasisrelowllem2 36225 inixp 36584 opideq 37200 cdlemg33b 39566 eelT11 43453 uunT11 43542 uunT11p1 43543 uunT11p2 43544 uun111 43551 |
Copyright terms: Public domain | W3C validator |