Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 565 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anidmdbi 567 anandi 674 anandir 675 3anidm 1104 truantru 1572 falanfal 1575 nic-axALT 1674 inidm 4158 2reu4lem 4462 opcom 5428 poirr 5526 asymref2 6037 xp11 6093 fununi 6538 brprcneu 6794 brprcneuALT 6795 f13dfv 7178 erinxp 8611 dom2lem 8813 pssnn 8989 pssnnOLD 9084 djuinf 9990 dmaddpi 10692 dmmulpi 10693 gcddvds 16255 iscatd2 17435 dfiso2 17529 isnsg2 18829 eqger 18851 gaorber 18959 efgcpbllemb 19406 xmeter 23631 caucfil 24492 tgcgr4 26937 axcontlem5 27381 cplgr3v 27847 erclwwlkref 28429 clwwlkn2 28453 erclwwlknref 28478 frgr3v 28684 numclwlk1lem1 28778 disjunsn 30978 bnj594 32937 subfaclefac 33183 isbasisrelowllem1 35570 isbasisrelowllem2 35571 inixp 35930 opideq 36520 cdlemg33b 38763 eelT11 42365 uunT11 42454 uunT11p1 42455 uunT11p2 42456 uun111 42463 |
Copyright terms: Public domain | W3C validator |