| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidmdbi 565 anandi 676 anandir 677 3anidm 1103 truantru 1573 falanfal 1576 nic-axALT 1674 inidm 4207 2reu4lem 4502 opcom 5481 poirr 5578 asymref2 6111 xp11 6169 fununi 6616 brprcneu 6871 brprcneuALT 6872 f13dfv 7272 erinxp 8810 dom2lem 9011 pssnn 9187 djuinf 10208 dmaddpi 10909 dmmulpi 10910 gcddvds 16527 iscatd2 17698 dfiso2 17790 isnsg2 19144 eqger 19166 gaorber 19296 efgcpbllemb 19741 xmeter 24377 caucfil 25240 tgcgr4 28515 axcontlem5 28952 cplgr3v 29419 erclwwlkref 30006 clwwlkn2 30030 erclwwlknref 30055 frgr3v 30261 numclwlk1lem1 30355 disjunsn 32580 bnj594 34948 subfaclefac 35203 isbasisrelowllem1 37378 isbasisrelowllem2 37379 inixp 37757 opideq 38366 cdlemg33b 40731 eelT11 44698 uunT11 44787 uunT11p1 44788 uunT11p2 44789 uun111 44796 |
| Copyright terms: Public domain | W3C validator |