| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidmdbi 565 anandi 676 anandir 677 3anidm 1103 truantru 1573 falanfal 1576 nic-axALT 1674 inidm 4178 2reu4lem 4473 opcom 5444 poirr 5539 asymref2 6066 xp11 6124 fununi 6557 brprcneu 6812 brprcneuALT 6813 f13dfv 7211 erinxp 8718 dom2lem 8917 pssnn 9082 djuinf 10083 dmaddpi 10784 dmmulpi 10785 gcddvds 16414 iscatd2 17587 dfiso2 17679 isnsg2 19035 eqger 19057 gaorber 19187 efgcpbllemb 19634 xmeter 24319 caucfil 25181 tgcgr4 28476 axcontlem5 28913 cplgr3v 29380 erclwwlkref 29964 clwwlkn2 29988 erclwwlknref 30013 frgr3v 30219 numclwlk1lem1 30313 disjunsn 32538 bnj594 34885 subfaclefac 35159 isbasisrelowllem1 37339 isbasisrelowllem2 37340 inixp 37718 opideq 38321 cdlemg33b 40696 eelT11 44690 uunT11 44779 uunT11p1 44780 uunT11p2 44781 uun111 44788 |
| Copyright terms: Public domain | W3C validator |