| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidmdbi 565 anandi 676 anandir 677 3anidm 1103 truantru 1574 falanfal 1577 nic-axALT 1675 inidm 4174 2reu4lem 4469 opcom 5439 poirr 5534 asymref2 6063 xp11 6122 fununi 6556 brprcneu 6812 brprcneuALT 6813 f13dfv 7208 erinxp 8715 dom2lem 8914 pssnn 9078 djuinf 10080 dmaddpi 10781 dmmulpi 10782 gcddvds 16414 iscatd2 17587 dfiso2 17679 isnsg2 19068 eqger 19090 gaorber 19220 efgcpbllemb 19667 xmeter 24348 caucfil 25210 tgcgr4 28509 axcontlem5 28946 cplgr3v 29413 erclwwlkref 30000 clwwlkn2 30024 erclwwlknref 30049 frgr3v 30255 numclwlk1lem1 30349 disjunsn 32574 bnj594 34924 subfaclefac 35220 isbasisrelowllem1 37399 isbasisrelowllem2 37400 inixp 37778 opideq 38385 cdlemg33b 40816 eelT11 44809 uunT11 44898 uunT11p1 44899 uunT11p2 44900 uun111 44907 |
| Copyright terms: Public domain | W3C validator |