MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanim Structured version   Visualization version   GIF version

Theorem nanim 1493
Description: Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.)
Assertion
Ref Expression
nanim ((𝜑𝜓) ↔ (𝜑 ⊼ (𝜓𝜓)))

Proof of Theorem nanim
StepHypRef Expression
1 nannan 1492 . 2 ((𝜑 ⊼ (𝜓𝜓)) ↔ (𝜑 → (𝜓𝜓)))
2 anidmdbi 566 . 2 ((𝜑 → (𝜓𝜓)) ↔ (𝜑𝜓))
31, 2bitr2i 275 1 ((𝜑𝜓) ↔ (𝜑 ⊼ (𝜓𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487
This theorem is referenced by:  nic-dfim  1672  nic-ax  1676  waj-ax  34603  lukshef-ax2  34604
  Copyright terms: Public domain W3C validator