| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nanim | Structured version Visualization version GIF version | ||
| Description: Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
| Ref | Expression |
|---|---|
| nanim | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nannan 1497 | . 2 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ↔ (𝜑 → (𝜓 ∧ 𝜓))) | |
| 2 | anidmdbi 565 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜓)) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | bitr2i 276 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: nic-dfim 1669 nic-ax 1673 waj-ax 36415 lukshef-ax2 36416 |
| Copyright terms: Public domain | W3C validator |