Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanim | Structured version Visualization version GIF version |
Description: Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
nanim | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nannan 1493 | . 2 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ↔ (𝜑 → (𝜓 ∧ 𝜓))) | |
2 | anidmdbi 569 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜓)) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | bitr2i 279 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nic-dfim 1677 nic-ax 1681 waj-ax 34505 lukshef-ax2 34506 |
Copyright terms: Public domain | W3C validator |