| Mathbox for Adrian Ducourtial |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > antnestlaw3lem | Structured version Visualization version GIF version | ||
| Description: Lemma for antnestlaw3 35687. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| Ref | Expression |
|---|---|
| antnestlaw3lem | ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conax1 170 | . . . . . 6 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ 𝜒) | |
| 2 | simplim 167 | . . . . . 6 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ((𝜑 → 𝜓) → 𝜒)) | |
| 3 | 1, 2 | mtod 198 | . . . . 5 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ (𝜑 → 𝜓)) |
| 4 | simplim 167 | . . . . 5 ⊢ (¬ (𝜑 → 𝜓) → 𝜑) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → 𝜑) |
| 6 | 5, 1 | jcnd 163 | . . 3 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ (𝜑 → 𝜒)) |
| 7 | 6 | pm2.21d 121 | . 2 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ((𝜑 → 𝜒) → 𝜓)) |
| 8 | conax1 170 | . . 3 ⊢ (¬ (𝜑 → 𝜓) → ¬ 𝜓) | |
| 9 | 3, 8 | syl 17 | . 2 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ 𝜓) |
| 10 | 7, 9 | jcnd 163 | 1 ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: antnestlaw3 35687 |
| Copyright terms: Public domain | W3C validator |