Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antnestlaw3lem Structured version   Visualization version   GIF version

Theorem antnestlaw3lem 35684
Description: Lemma for antnestlaw3 35687. (Contributed by Adrian Ducourtial, 5-Dec-2025.)
Assertion
Ref Expression
antnestlaw3lem (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ¬ (((𝜑𝜒) → 𝜓) → 𝜓))

Proof of Theorem antnestlaw3lem
StepHypRef Expression
1 conax1 170 . . . . . 6 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ¬ 𝜒)
2 simplim 167 . . . . . 6 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ((𝜑𝜓) → 𝜒))
31, 2mtod 198 . . . . 5 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ¬ (𝜑𝜓))
4 simplim 167 . . . . 5 (¬ (𝜑𝜓) → 𝜑)
53, 4syl 17 . . . 4 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → 𝜑)
65, 1jcnd 163 . . 3 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ¬ (𝜑𝜒))
76pm2.21d 121 . 2 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ((𝜑𝜒) → 𝜓))
8 conax1 170 . . 3 (¬ (𝜑𝜓) → ¬ 𝜓)
93, 8syl 17 . 2 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ¬ 𝜓)
107, 9jcnd 163 1 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ¬ (((𝜑𝜒) → 𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  antnestlaw3  35687
  Copyright terms: Public domain W3C validator