Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antnestlaw3 Structured version   Visualization version   GIF version

Theorem antnestlaw3 35687
Description: A law of nested antecedents. Compare with looinv 203. (Contributed by Adrian Ducourtial, 5-Dec-2025.)
Assertion
Ref Expression
antnestlaw3 ((((𝜑𝜓) → 𝜒) → 𝜒) ↔ (((𝜑𝜒) → 𝜓) → 𝜓))

Proof of Theorem antnestlaw3
StepHypRef Expression
1 antnestlaw3lem 35684 . . 3 (¬ (((𝜑𝜒) → 𝜓) → 𝜓) → ¬ (((𝜑𝜓) → 𝜒) → 𝜒))
21con4i 114 . 2 ((((𝜑𝜓) → 𝜒) → 𝜒) → (((𝜑𝜒) → 𝜓) → 𝜓))
3 antnestlaw3lem 35684 . . 3 (¬ (((𝜑𝜓) → 𝜒) → 𝜒) → ¬ (((𝜑𝜒) → 𝜓) → 𝜓))
43con4i 114 . 2 ((((𝜑𝜒) → 𝜓) → 𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒))
52, 4impbii 209 1 ((((𝜑𝜓) → 𝜒) → 𝜒) ↔ (((𝜑𝜒) → 𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  antnestALT  35688
  Copyright terms: Public domain W3C validator