| Mathbox for Adrian Ducourtial |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > antnestlaw1 | Structured version Visualization version GIF version | ||
| Description: A law of nested antecedents. The converse direction is a subschema of pm2.27 42. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| Ref | Expression |
|---|---|
| antnestlaw1 | ⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜓) ↔ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . . . 4 ⊢ (¬ (𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | conax1 170 | . . . 4 ⊢ (¬ (𝜑 → 𝜓) → ¬ 𝜓) | |
| 3 | 1, 2 | jcnd 163 | . . 3 ⊢ (¬ (𝜑 → 𝜓) → ¬ (((𝜑 → 𝜓) → 𝜓) → 𝜓)) |
| 4 | 3 | con4i 114 | . 2 ⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜓) → (𝜑 → 𝜓)) |
| 5 | pm2.27 42 | . 2 ⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜓) → 𝜓) → 𝜓)) | |
| 6 | 4, 5 | impbii 209 | 1 ⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜓) ↔ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: antnestALT 35688 |
| Copyright terms: Public domain | W3C validator |