Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antnestlaw1 Structured version   Visualization version   GIF version

Theorem antnestlaw1 35685
Description: A law of nested antecedents. The converse direction is a subschema of pm2.27 42. (Contributed by Adrian Ducourtial, 5-Dec-2025.)
Assertion
Ref Expression
antnestlaw1 ((((𝜑𝜓) → 𝜓) → 𝜓) ↔ (𝜑𝜓))

Proof of Theorem antnestlaw1
StepHypRef Expression
1 pm2.21 123 . . . 4 (¬ (𝜑𝜓) → ((𝜑𝜓) → 𝜓))
2 conax1 170 . . . 4 (¬ (𝜑𝜓) → ¬ 𝜓)
31, 2jcnd 163 . . 3 (¬ (𝜑𝜓) → ¬ (((𝜑𝜓) → 𝜓) → 𝜓))
43con4i 114 . 2 ((((𝜑𝜓) → 𝜓) → 𝜓) → (𝜑𝜓))
5 pm2.27 42 . 2 ((𝜑𝜓) → (((𝜑𝜓) → 𝜓) → 𝜓))
64, 5impbii 209 1 ((((𝜑𝜓) → 𝜓) → 𝜓) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  antnestALT  35688
  Copyright terms: Public domain W3C validator