|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > jcnd | Structured version Visualization version GIF version | ||
| Description: Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.) | 
| Ref | Expression | 
|---|---|
| jcnd.1 | ⊢ (𝜑 → 𝜓) | 
| jcnd.2 | ⊢ (𝜑 → ¬ 𝜒) | 
| Ref | Expression | 
|---|---|
| jcnd | ⊢ (𝜑 → ¬ (𝜓 → 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jcnd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 3 | jcn 162 | . 2 ⊢ (𝜓 → (¬ 𝜒 → ¬ (𝜓 → 𝜒))) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → ¬ (𝜓 → 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: nf1const 7324 isf34lem4 10417 strlem6 32275 hstrlem6 32283 nn0prpw 36324 unblimceq0 36508 relexpmulg 43723 limcrecl 45644 et-sqrtnegnre 46888 ichnreuop 47459 | 
| Copyright terms: Public domain | W3C validator |