Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aistia Structured version   Visualization version   GIF version

Theorem aistia 45607
Description: Given a is equivalent to , there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
Hypothesis
Ref Expression
aistia.1 (𝜑 ↔ ⊤)
Assertion
Ref Expression
aistia 𝜑

Proof of Theorem aistia
StepHypRef Expression
1 aistia.1 . 2 (𝜑 ↔ ⊤)
2 tbtru 1550 . 2 (𝜑 ↔ (𝜑 ↔ ⊤))
31, 2mpbir 230 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1545
This theorem is referenced by:  astbstanbst  45619  aistbistaandb  45620  aistbisfiaxb  45629  aisfbistiaxb  45630  aifftbifffaibif  45631  aifftbifffaibifff  45632  dandysum2p2e4  45708
  Copyright terms: Public domain W3C validator