| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aistia | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to ⊤, there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
| Ref | Expression |
|---|---|
| aistia.1 | ⊢ (𝜑 ↔ ⊤) |
| Ref | Expression |
|---|---|
| aistia | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aistia.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
| 2 | tbtru 1548 | . 2 ⊢ (𝜑 ↔ (𝜑 ↔ ⊤)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: astbstanbst 46900 aistbistaandb 46901 aistbisfiaxb 46910 aisfbistiaxb 46911 aifftbifffaibif 46912 aifftbifffaibifff 46913 dandysum2p2e4 46989 |
| Copyright terms: Public domain | W3C validator |