![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axaddass | Structured version Visualization version GIF version |
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 10400 be used later. Instead, use addass 10422. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 10362 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | addcnsrec 10363 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈𝑧, 𝑤〉]◡ E ) = [〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E ) | |
3 | addcnsrec 10363 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) | |
4 | addcnsrec 10363 | . 2 ⊢ ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)〉]◡ E ) | |
5 | addcnsrec 10363 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) = [〈(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))〉]◡ E ) | |
6 | addclsr 10303 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 +R 𝑧) ∈ R) | |
7 | addclsr 10303 | . . . 4 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 +R 𝑤) ∈ R) | |
8 | 6, 7 | anim12i 603 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑧 ∈ R) ∧ (𝑦 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
9 | 8 | an4s 647 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
10 | addclsr 10303 | . . . 4 ⊢ ((𝑧 ∈ R ∧ 𝑣 ∈ R) → (𝑧 +R 𝑣) ∈ R) | |
11 | addclsr 10303 | . . . 4 ⊢ ((𝑤 ∈ R ∧ 𝑢 ∈ R) → (𝑤 +R 𝑢) ∈ R) | |
12 | 10, 11 | anim12i 603 | . . 3 ⊢ (((𝑧 ∈ R ∧ 𝑣 ∈ R) ∧ (𝑤 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
13 | 12 | an4s 647 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
14 | addasssr 10308 | . 2 ⊢ ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)) | |
15 | addasssr 10308 | . 2 ⊢ ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)) | |
16 | 1, 2, 3, 4, 5, 9, 13, 14, 15 | ecovass 8204 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 E cep 5316 ◡ccnv 5406 (class class class)co 6976 Rcnr 10085 +R cplr 10089 ℂcc 10333 + caddc 10338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-omul 7910 df-er 8089 df-ec 8091 df-qs 8095 df-ni 10092 df-pli 10093 df-mi 10094 df-lti 10095 df-plpq 10128 df-mpq 10129 df-ltpq 10130 df-enq 10131 df-nq 10132 df-erq 10133 df-plq 10134 df-mq 10135 df-1nq 10136 df-rq 10137 df-ltnq 10138 df-np 10201 df-plp 10203 df-ltp 10205 df-enr 10275 df-nr 10276 df-plr 10277 df-c 10341 df-add 10346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |