MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddass Structured version   Visualization version   GIF version

Theorem axaddass 10770
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 10794 be used later. Instead, use addass 10816. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem axaddass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 10756 . 2 ℂ = ((R × R) / E )
2 addcnsrec 10757 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E + [⟨𝑧, 𝑤⟩] E ) = [⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E )
3 addcnsrec 10757 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
4 addcnsrec 10757 . 2 ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)⟩] E )
5 addcnsrec 10757 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E + [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))⟩] E )
6 addclsr 10697 . . . 4 ((𝑥R𝑧R) → (𝑥 +R 𝑧) ∈ R)
7 addclsr 10697 . . . 4 ((𝑦R𝑤R) → (𝑦 +R 𝑤) ∈ R)
86, 7anim12i 616 . . 3 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
98an4s 660 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
10 addclsr 10697 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
11 addclsr 10697 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
1210, 11anim12i 616 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
1312an4s 660 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
14 addasssr 10702 . 2 ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))
15 addasssr 10702 . 2 ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))
161, 2, 3, 4, 5, 9, 13, 14, 15ecovass 8506 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   E cep 5459  ccnv 5550  (class class class)co 7213  Rcnr 10479   +R cplr 10483  cc 10727   + caddc 10732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-ec 8393  df-qs 8397  df-ni 10486  df-pli 10487  df-mi 10488  df-lti 10489  df-plpq 10522  df-mpq 10523  df-ltpq 10524  df-enq 10525  df-nq 10526  df-erq 10527  df-plq 10528  df-mq 10529  df-1nq 10530  df-rq 10531  df-ltnq 10532  df-np 10595  df-plp 10597  df-ltp 10599  df-enr 10669  df-nr 10670  df-plr 10671  df-c 10735  df-add 10740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator