MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddass Structured version   Visualization version   GIF version

Theorem axaddass 11085
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 11109 be used later. Instead, use addass 11131. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem axaddass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 11071 . 2 ℂ = ((R × R) / E )
2 addcnsrec 11072 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E + [⟨𝑧, 𝑤⟩] E ) = [⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E )
3 addcnsrec 11072 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
4 addcnsrec 11072 . 2 ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)⟩] E )
5 addcnsrec 11072 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E + [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))⟩] E )
6 addclsr 11012 . . . 4 ((𝑥R𝑧R) → (𝑥 +R 𝑧) ∈ R)
7 addclsr 11012 . . . 4 ((𝑦R𝑤R) → (𝑦 +R 𝑤) ∈ R)
86, 7anim12i 613 . . 3 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
98an4s 660 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
10 addclsr 11012 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
11 addclsr 11012 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
1210, 11anim12i 613 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
1312an4s 660 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
14 addasssr 11017 . 2 ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))
15 addasssr 11017 . 2 ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))
161, 2, 3, 4, 5, 9, 13, 14, 15ecovass 8774 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   E cep 5530  ccnv 5630  (class class class)co 7369  Rcnr 10794   +R cplr 10798  cc 11042   + caddc 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847  df-np 10910  df-plp 10912  df-ltp 10914  df-enr 10984  df-nr 10985  df-plr 10986  df-c 11050  df-add 11055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator