| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11093, for naming consistency with addassi 11144. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11093 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 |
| This theorem was proved from axioms: ax-addass 11093 |
| This theorem is referenced by: addassi 11144 addassd 11156 00id 11310 addlid 11318 add12 11353 add32 11354 add32r 11355 add4 11356 nnaddcl 12170 uzaddcl 12824 xaddass 13170 fztp 13502 seradd 13970 expadd 14030 bernneq 14155 faclbnd6 14225 hashgadd 14303 swrds2 14866 clim2ser 15581 clim2ser2 15582 summolem3 15640 isumsplit 15766 fsumcube 15986 odd2np1lem 16270 prmlem0 17036 cnaddablx 19766 cnaddabl 19767 zaddablx 19770 cncrng 21314 cncrngOLD 21315 cnlmod 25057 pjthlem1 25354 ptolemy 26422 bcp1ctr 27207 cnaddabloOLD 30544 pjhthlem1 31354 dnibndlem5 36475 mblfinlem2 37657 facp2 42136 mogoldbblem 47724 nnsgrp 48181 nn0mnd 48183 2zrngasgrp 48250 |
| Copyright terms: Public domain | W3C validator |