Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version |
Description: Alias for ax-addass 10920, for naming consistency with addassi 10969. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 10920 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 + caddc 10858 |
This theorem was proved from axioms: ax-addass 10920 |
This theorem is referenced by: addassi 10969 addassd 10981 00id 11133 addid2 11141 add12 11175 add32 11176 add32r 11177 add4 11178 nnaddcl 11979 uzaddcl 12626 xaddass 12965 fztp 13294 seradd 13746 expadd 13806 bernneq 13925 faclbnd6 13994 hashgadd 14073 swrds2 14634 clim2ser 15347 clim2ser2 15348 summolem3 15407 isumsplit 15533 fsumcube 15751 odd2np1lem 16030 prmlem0 16788 cnaddablx 19450 cnaddabl 19451 zaddablx 19454 cncrng 20600 cnlmod 24284 pjthlem1 24582 ptolemy 25634 bcp1ctr 26408 cnaddabloOLD 28922 pjhthlem1 29732 dnibndlem5 34641 mblfinlem2 35794 facp2 40079 fac2xp3 40140 2xp3dxp2ge1d 40142 factwoffsmonot 40143 mogoldbblem 45124 nnsgrp 45323 nn0mnd 45325 2zrngasgrp 45450 |
Copyright terms: Public domain | W3C validator |