| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11140, for naming consistency with addassi 11191. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11140 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 |
| This theorem was proved from axioms: ax-addass 11140 |
| This theorem is referenced by: addassi 11191 addassd 11203 00id 11356 addlid 11364 add12 11399 add32 11400 add32r 11401 add4 11402 nnaddcl 12216 uzaddcl 12870 xaddass 13216 fztp 13548 seradd 14016 expadd 14076 bernneq 14201 faclbnd6 14271 hashgadd 14349 swrds2 14913 clim2ser 15628 clim2ser2 15629 summolem3 15687 isumsplit 15813 fsumcube 16033 odd2np1lem 16317 prmlem0 17083 cnaddablx 19805 cnaddabl 19806 zaddablx 19809 cncrng 21307 cncrngOLD 21308 cnlmod 25047 pjthlem1 25344 ptolemy 26412 bcp1ctr 27197 cnaddabloOLD 30517 pjhthlem1 31327 dnibndlem5 36477 mblfinlem2 37659 facp2 42138 mogoldbblem 47725 nnsgrp 48169 nn0mnd 48171 2zrngasgrp 48238 |
| Copyright terms: Public domain | W3C validator |