MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addass Structured version   Visualization version   GIF version

Theorem addass 11216
Description: Alias for ax-addass 11194, for naming consistency with addassi 11245. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem addass
StepHypRef Expression
1 ax-addass 11194 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  (class class class)co 7405  cc 11127   + caddc 11132
This theorem was proved from axioms:  ax-addass 11194
This theorem is referenced by:  addassi  11245  addassd  11257  00id  11410  addlid  11418  add12  11453  add32  11454  add32r  11455  add4  11456  nnaddcl  12263  uzaddcl  12920  xaddass  13265  fztp  13597  seradd  14062  expadd  14122  bernneq  14247  faclbnd6  14317  hashgadd  14395  swrds2  14959  clim2ser  15671  clim2ser2  15672  summolem3  15730  isumsplit  15856  fsumcube  16076  odd2np1lem  16359  prmlem0  17125  cnaddablx  19849  cnaddabl  19850  zaddablx  19853  cncrng  21351  cncrngOLD  21352  cnlmod  25091  pjthlem1  25389  ptolemy  26457  bcp1ctr  27242  cnaddabloOLD  30562  pjhthlem1  31372  dnibndlem5  36500  mblfinlem2  37682  facp2  42156  fac2xp3  42252  2xp3dxp2ge1d  42254  factwoffsmonot  42255  mogoldbblem  47734  nnsgrp  48152  nn0mnd  48154  2zrngasgrp  48221
  Copyright terms: Public domain W3C validator