| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11133, for naming consistency with addassi 11184. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11133 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 |
| This theorem was proved from axioms: ax-addass 11133 |
| This theorem is referenced by: addassi 11184 addassd 11196 00id 11349 addlid 11357 add12 11392 add32 11393 add32r 11394 add4 11395 nnaddcl 12209 uzaddcl 12863 xaddass 13209 fztp 13541 seradd 14009 expadd 14069 bernneq 14194 faclbnd6 14264 hashgadd 14342 swrds2 14906 clim2ser 15621 clim2ser2 15622 summolem3 15680 isumsplit 15806 fsumcube 16026 odd2np1lem 16310 prmlem0 17076 cnaddablx 19798 cnaddabl 19799 zaddablx 19802 cncrng 21300 cncrngOLD 21301 cnlmod 25040 pjthlem1 25337 ptolemy 26405 bcp1ctr 27190 cnaddabloOLD 30510 pjhthlem1 31320 dnibndlem5 36470 mblfinlem2 37652 facp2 42131 mogoldbblem 47721 nnsgrp 48165 nn0mnd 48167 2zrngasgrp 48234 |
| Copyright terms: Public domain | W3C validator |