| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11082, for naming consistency with addassi 11133. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11082 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 + caddc 11020 |
| This theorem was proved from axioms: ax-addass 11082 |
| This theorem is referenced by: addassi 11133 addassd 11145 00id 11299 addlid 11307 add12 11342 add32 11343 add32r 11344 add4 11345 nnaddcl 12159 uzaddcl 12808 xaddass 13155 fztp 13487 seradd 13958 expadd 14018 bernneq 14143 faclbnd6 14213 hashgadd 14291 swrds2 14854 clim2ser 15569 clim2ser2 15570 summolem3 15628 isumsplit 15754 fsumcube 15974 odd2np1lem 16258 prmlem0 17024 cnaddablx 19788 cnaddabl 19789 zaddablx 19792 cncrng 21334 cncrngOLD 21335 cnlmod 25087 pjthlem1 25384 ptolemy 26452 bcp1ctr 27237 cnaddabloOLD 30582 pjhthlem1 31392 dnibndlem5 36598 mblfinlem2 37771 facp2 42309 mogoldbblem 47882 nnsgrp 48339 nn0mnd 48341 2zrngasgrp 48408 |
| Copyright terms: Public domain | W3C validator |