![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version |
Description: Alias for ax-addass 11203, for naming consistency with addassi 11254. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 11203 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11136 + caddc 11141 |
This theorem was proved from axioms: ax-addass 11203 |
This theorem is referenced by: addassi 11254 addassd 11266 00id 11419 addlid 11427 add12 11461 add32 11462 add32r 11463 add4 11464 nnaddcl 12265 uzaddcl 12918 xaddass 13260 fztp 13589 seradd 14041 expadd 14101 bernneq 14223 faclbnd6 14290 hashgadd 14368 swrds2 14923 clim2ser 15633 clim2ser2 15634 summolem3 15692 isumsplit 15818 fsumcube 16036 odd2np1lem 16316 prmlem0 17074 cnaddablx 19822 cnaddabl 19823 zaddablx 19826 cncrng 21315 cncrngOLD 21316 cnlmod 25066 pjthlem1 25364 ptolemy 26430 bcp1ctr 27211 cnaddabloOLD 30390 pjhthlem1 31200 dnibndlem5 35957 mblfinlem2 37131 facp2 41615 fac2xp3 41691 2xp3dxp2ge1d 41693 factwoffsmonot 41694 mogoldbblem 47060 nnsgrp 47239 nn0mnd 47241 2zrngasgrp 47308 |
Copyright terms: Public domain | W3C validator |