| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11187, for naming consistency with addassi 11238. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11187 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 (class class class)co 7400 ℂcc 11120 + caddc 11125 |
| This theorem was proved from axioms: ax-addass 11187 |
| This theorem is referenced by: addassi 11238 addassd 11250 00id 11403 addlid 11411 add12 11446 add32 11447 add32r 11448 add4 11449 nnaddcl 12256 uzaddcl 12913 xaddass 13258 fztp 13587 seradd 14052 expadd 14112 bernneq 14237 faclbnd6 14307 hashgadd 14385 swrds2 14948 clim2ser 15660 clim2ser2 15661 summolem3 15719 isumsplit 15845 fsumcube 16065 odd2np1lem 16346 prmlem0 17112 cnaddablx 19836 cnaddabl 19837 zaddablx 19840 cncrng 21338 cncrngOLD 21339 cnlmod 25078 pjthlem1 25376 ptolemy 26443 bcp1ctr 27228 cnaddabloOLD 30496 pjhthlem1 31306 dnibndlem5 36429 mblfinlem2 37611 facp2 42085 fac2xp3 42181 2xp3dxp2ge1d 42183 factwoffsmonot 42184 mogoldbblem 47660 nnsgrp 48046 nn0mnd 48048 2zrngasgrp 48115 |
| Copyright terms: Public domain | W3C validator |