Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version |
Description: Alias for ax-addass 10986, for naming consistency with addassi 11035. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 10986 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 (class class class)co 7307 ℂcc 10919 + caddc 10924 |
This theorem was proved from axioms: ax-addass 10986 |
This theorem is referenced by: addassi 11035 addassd 11047 00id 11200 addid2 11208 add12 11242 add32 11243 add32r 11244 add4 11245 nnaddcl 12046 uzaddcl 12694 xaddass 13033 fztp 13362 seradd 13815 expadd 13875 bernneq 13994 faclbnd6 14063 hashgadd 14141 swrds2 14702 clim2ser 15415 clim2ser2 15416 summolem3 15475 isumsplit 15601 fsumcube 15819 odd2np1lem 16098 prmlem0 16856 cnaddablx 19518 cnaddabl 19519 zaddablx 19522 cncrng 20668 cnlmod 24352 pjthlem1 24650 ptolemy 25702 bcp1ctr 26476 cnaddabloOLD 28992 pjhthlem1 29802 dnibndlem5 34711 mblfinlem2 35863 facp2 40299 fac2xp3 40360 2xp3dxp2ge1d 40362 factwoffsmonot 40363 mogoldbblem 45416 nnsgrp 45615 nn0mnd 45617 2zrngasgrp 45742 |
Copyright terms: Public domain | W3C validator |