![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version |
Description: Alias for ax-addass 11249, for naming consistency with addassi 11300. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 11249 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 |
This theorem was proved from axioms: ax-addass 11249 |
This theorem is referenced by: addassi 11300 addassd 11312 00id 11465 addlid 11473 add12 11507 add32 11508 add32r 11509 add4 11510 nnaddcl 12316 uzaddcl 12969 xaddass 13311 fztp 13640 seradd 14095 expadd 14155 bernneq 14278 faclbnd6 14348 hashgadd 14426 swrds2 14989 clim2ser 15703 clim2ser2 15704 summolem3 15762 isumsplit 15888 fsumcube 16108 odd2np1lem 16388 prmlem0 17153 cnaddablx 19910 cnaddabl 19911 zaddablx 19914 cncrng 21424 cncrngOLD 21425 cnlmod 25192 pjthlem1 25490 ptolemy 26556 bcp1ctr 27341 cnaddabloOLD 30613 pjhthlem1 31423 dnibndlem5 36448 mblfinlem2 37618 facp2 42100 fac2xp3 42196 2xp3dxp2ge1d 42198 factwoffsmonot 42199 mogoldbblem 47594 nnsgrp 47900 nn0mnd 47902 2zrngasgrp 47969 |
Copyright terms: Public domain | W3C validator |