| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11109, for naming consistency with addassi 11160. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11109 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 + caddc 11047 |
| This theorem was proved from axioms: ax-addass 11109 |
| This theorem is referenced by: addassi 11160 addassd 11172 00id 11325 addlid 11333 add12 11368 add32 11369 add32r 11370 add4 11371 nnaddcl 12185 uzaddcl 12839 xaddass 13185 fztp 13517 seradd 13985 expadd 14045 bernneq 14170 faclbnd6 14240 hashgadd 14318 swrds2 14882 clim2ser 15597 clim2ser2 15598 summolem3 15656 isumsplit 15782 fsumcube 16002 odd2np1lem 16286 prmlem0 17052 cnaddablx 19774 cnaddabl 19775 zaddablx 19778 cncrng 21276 cncrngOLD 21277 cnlmod 25016 pjthlem1 25313 ptolemy 26381 bcp1ctr 27166 cnaddabloOLD 30483 pjhthlem1 31293 dnibndlem5 36443 mblfinlem2 37625 facp2 42104 mogoldbblem 47694 nnsgrp 48138 nn0mnd 48140 2zrngasgrp 48207 |
| Copyright terms: Public domain | W3C validator |