| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11066, for naming consistency with addassi 11117. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11066 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 + caddc 11004 |
| This theorem was proved from axioms: ax-addass 11066 |
| This theorem is referenced by: addassi 11117 addassd 11129 00id 11283 addlid 11291 add12 11326 add32 11327 add32r 11328 add4 11329 nnaddcl 12143 uzaddcl 12797 xaddass 13143 fztp 13475 seradd 13946 expadd 14006 bernneq 14131 faclbnd6 14201 hashgadd 14279 swrds2 14842 clim2ser 15557 clim2ser2 15558 summolem3 15616 isumsplit 15742 fsumcube 15962 odd2np1lem 16246 prmlem0 17012 cnaddablx 19775 cnaddabl 19776 zaddablx 19779 cncrng 21320 cncrngOLD 21321 cnlmod 25062 pjthlem1 25359 ptolemy 26427 bcp1ctr 27212 cnaddabloOLD 30553 pjhthlem1 31363 dnibndlem5 36516 mblfinlem2 37698 facp2 42176 mogoldbblem 47751 nnsgrp 48208 nn0mnd 48210 2zrngasgrp 48277 |
| Copyright terms: Public domain | W3C validator |