| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addass 11194, for naming consistency with addassi 11245. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 11194 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 + caddc 11132 |
| This theorem was proved from axioms: ax-addass 11194 |
| This theorem is referenced by: addassi 11245 addassd 11257 00id 11410 addlid 11418 add12 11453 add32 11454 add32r 11455 add4 11456 nnaddcl 12263 uzaddcl 12920 xaddass 13265 fztp 13597 seradd 14062 expadd 14122 bernneq 14247 faclbnd6 14317 hashgadd 14395 swrds2 14959 clim2ser 15671 clim2ser2 15672 summolem3 15730 isumsplit 15856 fsumcube 16076 odd2np1lem 16359 prmlem0 17125 cnaddablx 19849 cnaddabl 19850 zaddablx 19853 cncrng 21351 cncrngOLD 21352 cnlmod 25091 pjthlem1 25389 ptolemy 26457 bcp1ctr 27242 cnaddabloOLD 30562 pjhthlem1 31372 dnibndlem5 36500 mblfinlem2 37682 facp2 42156 fac2xp3 42252 2xp3dxp2ge1d 42254 factwoffsmonot 42255 mogoldbblem 47734 nnsgrp 48152 nn0mnd 48154 2zrngasgrp 48221 |
| Copyright terms: Public domain | W3C validator |