Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version |
Description: Alias for ax-addass 10680, for naming consistency with addassi 10729. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 10680 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 (class class class)co 7170 ℂcc 10613 + caddc 10618 |
This theorem was proved from axioms: ax-addass 10680 |
This theorem is referenced by: addassi 10729 addassd 10741 00id 10893 addid2 10901 add12 10935 add32 10936 add32r 10937 add4 10938 nnaddcl 11739 uzaddcl 12386 xaddass 12725 fztp 13054 seradd 13504 expadd 13563 bernneq 13682 faclbnd6 13751 hashgadd 13830 swrds2 14391 clim2ser 15104 clim2ser2 15105 summolem3 15164 isumsplit 15288 fsumcube 15506 odd2np1lem 15785 prmlem0 16542 cnaddablx 19107 cnaddabl 19108 zaddablx 19111 cncrng 20238 cnlmod 23892 pjthlem1 24189 ptolemy 25241 bcp1ctr 26015 cnaddabloOLD 28516 pjhthlem1 29326 dnibndlem5 34300 mblfinlem2 35438 facp2 39705 fac2xp3 39751 2xp3dxp2ge1d 39753 factwoffsmonot 39754 mogoldbblem 44706 nnsgrp 44905 nn0mnd 44907 2zrngasgrp 45032 |
Copyright terms: Public domain | W3C validator |