![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addass | Structured version Visualization version GIF version |
Description: Alias for ax-addass 11217, for naming consistency with addassi 11268. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 11217 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 + caddc 11155 |
This theorem was proved from axioms: ax-addass 11217 |
This theorem is referenced by: addassi 11268 addassd 11280 00id 11433 addlid 11441 add12 11476 add32 11477 add32r 11478 add4 11479 nnaddcl 12286 uzaddcl 12943 xaddass 13287 fztp 13616 seradd 14081 expadd 14141 bernneq 14264 faclbnd6 14334 hashgadd 14412 swrds2 14975 clim2ser 15687 clim2ser2 15688 summolem3 15746 isumsplit 15872 fsumcube 16092 odd2np1lem 16373 prmlem0 17139 cnaddablx 19900 cnaddabl 19901 zaddablx 19904 cncrng 21418 cncrngOLD 21419 cnlmod 25186 pjthlem1 25484 ptolemy 26552 bcp1ctr 27337 cnaddabloOLD 30609 pjhthlem1 31419 dnibndlem5 36464 mblfinlem2 37644 facp2 42124 fac2xp3 42220 2xp3dxp2ge1d 42222 factwoffsmonot 42223 mogoldbblem 47644 nnsgrp 48020 nn0mnd 48022 2zrngasgrp 48089 |
Copyright terms: Public domain | W3C validator |