Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version |
Description: Alias for ax-addcl 10940, for naming consistency with addcli 10990. Use this theorem instead of ax-addcl 10940 or axaddcl 10916. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 10940 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 + caddc 10883 |
This theorem was proved from axioms: ax-addcl 10940 |
This theorem is referenced by: adddir 10975 0cn 10976 addcli 10990 addcld 11003 muladd11 11154 peano2cn 11156 muladd11r 11197 add4 11204 0cnALT2 11219 negeu 11220 pncan 11236 2addsub 11244 addsubeq4 11245 nppcan2 11261 pnpcan 11269 ppncan 11272 muladd 11416 mulsub 11427 recex 11616 muleqadd 11628 conjmul 11701 halfaddsubcl 12214 halfaddsub 12215 serf 13760 seradd 13774 sersub 13775 binom3 13948 bernneq 13953 lswccatn0lsw 14305 revccat 14488 2cshwcshw 14547 shftlem 14788 shftval2 14795 shftval5 14798 2shfti 14800 crre 14834 crim 14835 cjadd 14861 addcj 14868 sqabsadd 15003 absreimsq 15013 absreim 15014 abstri 15051 sqreulem 15080 sqreu 15081 addcn2 15312 o1add 15332 climadd 15350 clim2ser 15375 clim2ser2 15376 isermulc2 15378 isercolllem3 15387 summolem3 15435 summolem2a 15436 fsumcl 15454 fsummulc2 15505 fsumrelem 15528 binom 15551 isumsplit 15561 risefacval2 15729 risefaccl 15734 risefallfac 15743 risefacp1 15748 binomfallfac 15760 binomrisefac 15761 bpoly3 15777 efcj 15810 ef4p 15831 tanval3 15852 efi4p 15855 sinadd 15882 cosadd 15883 tanadd 15885 addsin 15888 demoivreALT 15919 opoe 16081 pythagtriplem4 16529 pythagtriplem12 16536 pythagtriplem14 16538 pythagtriplem16 16540 gzaddcl 16647 cnaddablx 19478 cnaddabl 19479 cncrng 20628 cnperf 23992 cnlmod 24312 cnstrcvs 24313 cncvs 24317 dvaddbr 25111 dvaddf 25115 dveflem 25152 plyaddcl 25390 plymulcl 25391 plysubcl 25392 coeaddlem 25419 dgrcolem1 25443 dgrcolem2 25444 quotlem 25469 quotcl2 25471 quotdgr 25472 sinperlem 25646 ptolemy 25662 tangtx 25671 sinkpi 25687 efif1olem2 25708 logrnaddcl 25739 logneg 25752 logimul 25778 cxpadd 25843 binom4 26009 atanf 26039 atanneg 26066 atancj 26069 efiatan 26071 atanlogaddlem 26072 atanlogadd 26073 atanlogsublem 26074 atanlogsub 26075 efiatan2 26076 2efiatan 26077 tanatan 26078 cosatan 26080 cosatanne0 26081 atantan 26082 atanbndlem 26084 atans2 26090 dvatan 26094 atantayl 26096 efrlim 26128 dfef2 26129 gamcvg2lem 26217 ftalem7 26237 prmorcht 26336 bposlem9 26449 lgsquad2lem1 26541 2sqlem2 26575 cncph 29190 hhssnv 29635 hoadddir 30175 superpos 30725 knoppcnlem8 34689 cos2h 35777 tan2h 35778 ftc1anclem3 35861 ftc1anclem7 35865 ftc1anclem8 35866 ftc1anc 35867 facp2 40106 fac2xp3 40167 fsumsermpt 43127 stirlinglem5 43626 stirlinglem7 43628 cnapbmcpd 44798 fmtnodvds 45007 opoeALTV 45146 mogoldbblem 45183 |
Copyright terms: Public domain | W3C validator |