![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version |
Description: Alias for ax-addcl 11212, for naming consistency with addcli 11264. Use this theorem instead of ax-addcl 11212 or axaddcl 11188. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 11212 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 + caddc 11155 |
This theorem was proved from axioms: ax-addcl 11212 |
This theorem is referenced by: mpoaddf 11246 adddir 11249 0cn 11250 addcli 11264 addcld 11277 muladd11 11428 peano2cn 11430 muladd11r 11471 add4 11479 0cnALT2 11494 negeu 11495 pncan 11511 2addsub 11519 addsubeq4 11520 nppcan2 11537 pnpcan 11545 ppncan 11548 muladd 11692 mulsub 11703 recex 11892 muleqadd 11904 conjmul 11981 halfaddsubcl 12495 halfaddsub 12496 serf 14067 seradd 14081 sersub 14082 binom3 14259 bernneq 14264 lswccatn0lsw 14625 revccat 14800 2cshwcshw 14860 shftlem 15103 shftval2 15110 shftval5 15113 2shfti 15115 crre 15149 crim 15150 cjadd 15176 addcj 15183 sqabsadd 15317 absreimsq 15327 absreim 15328 abstri 15365 sqreulem 15394 sqreu 15395 addcn2 15626 o1add 15646 climadd 15664 clim2ser 15687 clim2ser2 15688 isermulc2 15690 isercolllem3 15699 summolem3 15746 summolem2a 15747 fsumcl 15765 fsummulc2 15816 fsumrelem 15839 binom 15862 isumsplit 15872 risefacval2 16042 risefaccl 16047 risefallfac 16056 risefacp1 16061 binomfallfac 16073 binomrisefac 16074 bpoly3 16090 efcj 16124 ef4p 16145 tanval3 16166 efi4p 16169 sinadd 16196 cosadd 16197 tanadd 16199 addsin 16202 demoivreALT 16233 opoe 16396 pythagtriplem4 16852 pythagtriplem12 16859 pythagtriplem14 16861 pythagtriplem16 16863 gzaddcl 16970 cnaddablx 19900 cnaddabl 19901 cncrng 21418 cncrngOLD 21419 cnperf 24855 cnlmod 25186 cnstrcvs 25187 cncvs 25191 dvaddbr 25988 dvaddf 25993 dveflem 26031 plyaddcl 26273 plymulcl 26274 plysubcl 26275 coeaddlem 26302 dgrcolem1 26327 dgrcolem2 26328 quotlem 26356 quotcl2 26358 quotdgr 26359 sinperlem 26536 ptolemy 26552 tangtx 26561 sinkpi 26578 efif1olem2 26599 logrnaddcl 26630 logneg 26644 logimul 26670 cxpadd 26735 binom4 26907 atanf 26937 atanneg 26964 atancj 26967 efiatan 26969 atanlogaddlem 26970 atanlogadd 26971 atanlogsublem 26972 atanlogsub 26973 efiatan2 26974 2efiatan 26975 tanatan 26976 cosatan 26978 cosatanne0 26979 atantan 26980 atanbndlem 26982 atans2 26988 dvatan 26992 atantayl 26994 efrlim 27026 efrlimOLD 27027 dfef2 27028 gamcvg2lem 27116 ftalem7 27136 prmorcht 27235 bposlem9 27350 lgsquad2lem1 27442 2sqlem2 27476 cncph 30847 hhssnv 31292 hoadddir 31832 superpos 32382 knoppcnlem8 36482 cos2h 37597 tan2h 37598 ftc1anclem3 37681 ftc1anclem7 37685 ftc1anclem8 37686 ftc1anc 37687 facp2 42124 fac2xp3 42220 sumcubes 42325 fsumsermpt 45534 stirlinglem5 46033 stirlinglem7 46035 cnapbmcpd 47244 fmtnodvds 47468 opoeALTV 47607 mogoldbblem 47644 |
Copyright terms: Public domain | W3C validator |