| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addcl 11128, for naming consistency with addcli 11180. Use this theorem instead of ax-addcl 11128 or axaddcl 11104. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 11128 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 |
| This theorem was proved from axioms: ax-addcl 11128 |
| This theorem is referenced by: mpoaddf 11162 adddir 11165 0cn 11166 addcli 11180 addcld 11193 muladd11 11344 peano2cn 11346 muladd11r 11387 add4 11395 0cnALT2 11410 negeu 11411 pncan 11427 2addsub 11435 addsubeq4 11436 nppcan2 11453 pnpcan 11461 ppncan 11464 muladd 11610 mulsub 11621 recex 11810 muleqadd 11822 conjmul 11899 halfaddsubcl 12414 halfaddsub 12415 serf 13995 seradd 14009 sersub 14010 binom3 14189 bernneq 14194 lswccatn0lsw 14556 revccat 14731 2cshwcshw 14791 shftlem 15034 shftval2 15041 shftval5 15044 2shfti 15046 crre 15080 crim 15081 cjadd 15107 addcj 15114 sqabsadd 15248 absreimsq 15258 absreim 15259 abstri 15297 sqreulem 15326 sqreu 15327 addcn2 15560 o1add 15580 climadd 15598 clim2ser 15621 clim2ser2 15622 isermulc2 15624 isercolllem3 15633 summolem3 15680 summolem2a 15681 fsumcl 15699 fsummulc2 15750 fsumrelem 15773 binom 15796 isumsplit 15806 risefacval2 15976 risefaccl 15981 risefallfac 15990 risefacp1 15995 binomfallfac 16007 binomrisefac 16008 bpoly3 16024 efcj 16058 ef4p 16081 tanval3 16102 efi4p 16105 sinadd 16132 cosadd 16133 tanadd 16135 addsin 16138 demoivreALT 16169 opoe 16333 pythagtriplem4 16790 pythagtriplem12 16797 pythagtriplem14 16799 pythagtriplem16 16801 gzaddcl 16908 cnaddablx 19798 cnaddabl 19799 cncrng 21300 cncrngOLD 21301 cnperf 24709 cnlmod 25040 cnstrcvs 25041 cncvs 25045 dvaddbr 25840 dvaddf 25845 dveflem 25883 plyaddcl 26125 plymulcl 26126 plysubcl 26127 coeaddlem 26154 dgrcolem1 26179 dgrcolem2 26180 quotlem 26208 quotcl2 26210 quotdgr 26211 sinperlem 26389 ptolemy 26405 tangtx 26414 sinkpi 26431 efif1olem2 26452 logrnaddcl 26483 logneg 26497 logimul 26523 cxpadd 26588 binom4 26760 atanf 26790 atanneg 26817 atancj 26820 efiatan 26822 atanlogaddlem 26823 atanlogadd 26824 atanlogsublem 26825 atanlogsub 26826 efiatan2 26827 2efiatan 26828 tanatan 26829 cosatan 26831 cosatanne0 26832 atantan 26833 atanbndlem 26835 atans2 26841 dvatan 26845 atantayl 26847 efrlim 26879 efrlimOLD 26880 dfef2 26881 gamcvg2lem 26969 ftalem7 26989 prmorcht 27088 bposlem9 27203 lgsquad2lem1 27295 2sqlem2 27329 cncph 30748 hhssnv 31193 hoadddir 31733 superpos 32283 knoppcnlem8 36488 cos2h 37605 tan2h 37606 ftc1anclem3 37689 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 facp2 42131 sumcubes 42301 fsumsermpt 45577 stirlinglem5 46076 stirlinglem7 46078 cnapbmcpd 47296 fmtnodvds 47545 opoeALTV 47684 mogoldbblem 47721 |
| Copyright terms: Public domain | W3C validator |