| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addcl 11088, for naming consistency with addcli 11140. Use this theorem instead of ax-addcl 11088 or axaddcl 11064. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 11088 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 |
| This theorem was proved from axioms: ax-addcl 11088 |
| This theorem is referenced by: mpoaddf 11122 adddir 11125 0cn 11126 addcli 11140 addcld 11153 muladd11 11304 peano2cn 11306 muladd11r 11347 add4 11355 0cnALT2 11370 negeu 11371 pncan 11387 2addsub 11395 addsubeq4 11396 nppcan2 11413 pnpcan 11421 ppncan 11424 muladd 11570 mulsub 11581 recex 11770 muleqadd 11782 conjmul 11859 halfaddsubcl 12374 halfaddsub 12375 serf 13955 seradd 13969 sersub 13970 binom3 14149 bernneq 14154 lswccatn0lsw 14516 revccat 14690 2cshwcshw 14750 shftlem 14993 shftval2 15000 shftval5 15003 2shfti 15005 crre 15039 crim 15040 cjadd 15066 addcj 15073 sqabsadd 15207 absreimsq 15217 absreim 15218 abstri 15256 sqreulem 15285 sqreu 15286 addcn2 15519 o1add 15539 climadd 15557 clim2ser 15580 clim2ser2 15581 isermulc2 15583 isercolllem3 15592 summolem3 15639 summolem2a 15640 fsumcl 15658 fsummulc2 15709 fsumrelem 15732 binom 15755 isumsplit 15765 risefacval2 15935 risefaccl 15940 risefallfac 15949 risefacp1 15954 binomfallfac 15966 binomrisefac 15967 bpoly3 15983 efcj 16017 ef4p 16040 tanval3 16061 efi4p 16064 sinadd 16091 cosadd 16092 tanadd 16094 addsin 16097 demoivreALT 16128 opoe 16292 pythagtriplem4 16749 pythagtriplem12 16756 pythagtriplem14 16758 pythagtriplem16 16760 gzaddcl 16867 cnaddablx 19765 cnaddabl 19766 cncrng 21313 cncrngOLD 21314 cnperf 24725 cnlmod 25056 cnstrcvs 25057 cncvs 25061 dvaddbr 25856 dvaddf 25861 dveflem 25899 plyaddcl 26141 plymulcl 26142 plysubcl 26143 coeaddlem 26170 dgrcolem1 26195 dgrcolem2 26196 quotlem 26224 quotcl2 26226 quotdgr 26227 sinperlem 26405 ptolemy 26421 tangtx 26430 sinkpi 26447 efif1olem2 26468 logrnaddcl 26499 logneg 26513 logimul 26539 cxpadd 26604 binom4 26776 atanf 26806 atanneg 26833 atancj 26836 efiatan 26838 atanlogaddlem 26839 atanlogadd 26840 atanlogsublem 26841 atanlogsub 26842 efiatan2 26843 2efiatan 26844 tanatan 26845 cosatan 26847 cosatanne0 26848 atantan 26849 atanbndlem 26851 atans2 26857 dvatan 26861 atantayl 26863 efrlim 26895 efrlimOLD 26896 dfef2 26897 gamcvg2lem 26985 ftalem7 27005 prmorcht 27104 bposlem9 27219 lgsquad2lem1 27311 2sqlem2 27345 cncph 30781 hhssnv 31226 hoadddir 31766 superpos 32316 knoppcnlem8 36473 cos2h 37590 tan2h 37591 ftc1anclem3 37674 ftc1anclem7 37678 ftc1anclem8 37679 ftc1anc 37680 facp2 42116 sumcubes 42286 fsumsermpt 45561 stirlinglem5 46060 stirlinglem7 46062 cnapbmcpd 47280 fmtnodvds 47529 opoeALTV 47668 mogoldbblem 47705 |
| Copyright terms: Public domain | W3C validator |