| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addcl 11135, for naming consistency with addcli 11187. Use this theorem instead of ax-addcl 11135 or axaddcl 11111. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 11135 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 |
| This theorem was proved from axioms: ax-addcl 11135 |
| This theorem is referenced by: mpoaddf 11169 adddir 11172 0cn 11173 addcli 11187 addcld 11200 muladd11 11351 peano2cn 11353 muladd11r 11394 add4 11402 0cnALT2 11417 negeu 11418 pncan 11434 2addsub 11442 addsubeq4 11443 nppcan2 11460 pnpcan 11468 ppncan 11471 muladd 11617 mulsub 11628 recex 11817 muleqadd 11829 conjmul 11906 halfaddsubcl 12421 halfaddsub 12422 serf 14002 seradd 14016 sersub 14017 binom3 14196 bernneq 14201 lswccatn0lsw 14563 revccat 14738 2cshwcshw 14798 shftlem 15041 shftval2 15048 shftval5 15051 2shfti 15053 crre 15087 crim 15088 cjadd 15114 addcj 15121 sqabsadd 15255 absreimsq 15265 absreim 15266 abstri 15304 sqreulem 15333 sqreu 15334 addcn2 15567 o1add 15587 climadd 15605 clim2ser 15628 clim2ser2 15629 isermulc2 15631 isercolllem3 15640 summolem3 15687 summolem2a 15688 fsumcl 15706 fsummulc2 15757 fsumrelem 15780 binom 15803 isumsplit 15813 risefacval2 15983 risefaccl 15988 risefallfac 15997 risefacp1 16002 binomfallfac 16014 binomrisefac 16015 bpoly3 16031 efcj 16065 ef4p 16088 tanval3 16109 efi4p 16112 sinadd 16139 cosadd 16140 tanadd 16142 addsin 16145 demoivreALT 16176 opoe 16340 pythagtriplem4 16797 pythagtriplem12 16804 pythagtriplem14 16806 pythagtriplem16 16808 gzaddcl 16915 cnaddablx 19805 cnaddabl 19806 cncrng 21307 cncrngOLD 21308 cnperf 24716 cnlmod 25047 cnstrcvs 25048 cncvs 25052 dvaddbr 25847 dvaddf 25852 dveflem 25890 plyaddcl 26132 plymulcl 26133 plysubcl 26134 coeaddlem 26161 dgrcolem1 26186 dgrcolem2 26187 quotlem 26215 quotcl2 26217 quotdgr 26218 sinperlem 26396 ptolemy 26412 tangtx 26421 sinkpi 26438 efif1olem2 26459 logrnaddcl 26490 logneg 26504 logimul 26530 cxpadd 26595 binom4 26767 atanf 26797 atanneg 26824 atancj 26827 efiatan 26829 atanlogaddlem 26830 atanlogadd 26831 atanlogsublem 26832 atanlogsub 26833 efiatan2 26834 2efiatan 26835 tanatan 26836 cosatan 26838 cosatanne0 26839 atantan 26840 atanbndlem 26842 atans2 26848 dvatan 26852 atantayl 26854 efrlim 26886 efrlimOLD 26887 dfef2 26888 gamcvg2lem 26976 ftalem7 26996 prmorcht 27095 bposlem9 27210 lgsquad2lem1 27302 2sqlem2 27336 cncph 30755 hhssnv 31200 hoadddir 31740 superpos 32290 knoppcnlem8 36495 cos2h 37612 tan2h 37613 ftc1anclem3 37696 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 facp2 42138 sumcubes 42308 fsumsermpt 45584 stirlinglem5 46083 stirlinglem7 46085 cnapbmcpd 47300 fmtnodvds 47549 opoeALTV 47688 mogoldbblem 47725 |
| Copyright terms: Public domain | W3C validator |