![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version |
Description: Alias for ax-addcl 11166, for naming consistency with addcli 11217. Use this theorem instead of ax-addcl 11166 or axaddcl 11142. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 11166 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 (class class class)co 7401 ℂcc 11104 + caddc 11109 |
This theorem was proved from axioms: ax-addcl 11166 |
This theorem is referenced by: adddir 11202 0cn 11203 addcli 11217 addcld 11230 muladd11 11381 peano2cn 11383 muladd11r 11424 add4 11431 0cnALT2 11446 negeu 11447 pncan 11463 2addsub 11471 addsubeq4 11472 nppcan2 11488 pnpcan 11496 ppncan 11499 muladd 11643 mulsub 11654 recex 11843 muleqadd 11855 conjmul 11928 halfaddsubcl 12441 halfaddsub 12442 serf 13993 seradd 14007 sersub 14008 binom3 14184 bernneq 14189 lswccatn0lsw 14538 revccat 14713 2cshwcshw 14773 shftlem 15012 shftval2 15019 shftval5 15022 2shfti 15024 crre 15058 crim 15059 cjadd 15085 addcj 15092 sqabsadd 15226 absreimsq 15236 absreim 15237 abstri 15274 sqreulem 15303 sqreu 15304 addcn2 15535 o1add 15555 climadd 15573 clim2ser 15598 clim2ser2 15599 isermulc2 15601 isercolllem3 15610 summolem3 15657 summolem2a 15658 fsumcl 15676 fsummulc2 15727 fsumrelem 15750 binom 15773 isumsplit 15783 risefacval2 15951 risefaccl 15956 risefallfac 15965 risefacp1 15970 binomfallfac 15982 binomrisefac 15983 bpoly3 15999 efcj 16032 ef4p 16053 tanval3 16074 efi4p 16077 sinadd 16104 cosadd 16105 tanadd 16107 addsin 16110 demoivreALT 16141 opoe 16303 pythagtriplem4 16751 pythagtriplem12 16758 pythagtriplem14 16760 pythagtriplem16 16762 gzaddcl 16869 cnaddablx 19778 cnaddabl 19779 cncrng 21250 cnperf 24658 cnlmod 24989 cnstrcvs 24990 cncvs 24994 dvaddbr 25790 dvaddf 25795 dveflem 25833 plyaddcl 26074 plymulcl 26075 plysubcl 26076 coeaddlem 26103 dgrcolem1 26128 dgrcolem2 26129 quotlem 26154 quotcl2 26156 quotdgr 26157 sinperlem 26332 ptolemy 26348 tangtx 26357 sinkpi 26373 efif1olem2 26394 logrnaddcl 26425 logneg 26438 logimul 26464 cxpadd 26529 binom4 26698 atanf 26728 atanneg 26755 atancj 26758 efiatan 26760 atanlogaddlem 26761 atanlogadd 26762 atanlogsublem 26763 atanlogsub 26764 efiatan2 26765 2efiatan 26766 tanatan 26767 cosatan 26769 cosatanne0 26770 atantan 26771 atanbndlem 26773 atans2 26779 dvatan 26783 atantayl 26785 efrlim 26817 efrlimOLD 26818 dfef2 26819 gamcvg2lem 26907 ftalem7 26927 prmorcht 27026 bposlem9 27141 lgsquad2lem1 27233 2sqlem2 27267 cncph 30541 hhssnv 30986 hoadddir 31526 superpos 32076 mpoaddf 35658 gg-cncrng 35673 knoppcnlem8 35866 cos2h 36969 tan2h 36970 ftc1anclem3 37053 ftc1anclem7 37057 ftc1anclem8 37058 ftc1anc 37059 facp2 41452 fac2xp3 41513 sumcubes 41700 fsumsermpt 44780 stirlinglem5 45279 stirlinglem7 45281 cnapbmcpd 46488 fmtnodvds 46697 opoeALTV 46836 mogoldbblem 46873 |
Copyright terms: Public domain | W3C validator |