| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addcl 11073, for naming consistency with addcli 11125. Use this theorem instead of ax-addcl 11073 or axaddcl 11049. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 11073 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 + caddc 11016 |
| This theorem was proved from axioms: ax-addcl 11073 |
| This theorem is referenced by: mpoaddf 11107 adddir 11110 0cn 11111 addcli 11125 addcld 11138 muladd11 11290 peano2cn 11292 muladd11r 11333 add4 11341 0cnALT2 11356 negeu 11357 pncan 11373 2addsub 11381 addsubeq4 11382 nppcan2 11399 pnpcan 11407 ppncan 11410 muladd 11556 mulsub 11567 recex 11756 muleqadd 11768 conjmul 11845 halfaddsubcl 12360 halfaddsub 12361 serf 13939 seradd 13953 sersub 13954 binom3 14133 bernneq 14138 lswccatn0lsw 14501 revccat 14675 2cshwcshw 14734 shftlem 14977 shftval2 14984 shftval5 14987 2shfti 14989 crre 15023 crim 15024 cjadd 15050 addcj 15057 sqabsadd 15191 absreimsq 15201 absreim 15202 abstri 15240 sqreulem 15269 sqreu 15270 addcn2 15503 o1add 15523 climadd 15541 clim2ser 15564 clim2ser2 15565 isermulc2 15567 isercolllem3 15576 summolem3 15623 summolem2a 15624 fsumcl 15642 fsummulc2 15693 fsumrelem 15716 binom 15739 isumsplit 15749 risefacval2 15919 risefaccl 15924 risefallfac 15933 risefacp1 15938 binomfallfac 15950 binomrisefac 15951 bpoly3 15967 efcj 16001 ef4p 16024 tanval3 16045 efi4p 16048 sinadd 16075 cosadd 16076 tanadd 16078 addsin 16081 demoivreALT 16112 opoe 16276 pythagtriplem4 16733 pythagtriplem12 16740 pythagtriplem14 16742 pythagtriplem16 16744 gzaddcl 16851 cnaddablx 19782 cnaddabl 19783 cncrng 21327 cncrngOLD 21328 cnperf 24737 cnlmod 25068 cnstrcvs 25069 cncvs 25073 dvaddbr 25868 dvaddf 25873 dveflem 25911 plyaddcl 26153 plymulcl 26154 plysubcl 26155 coeaddlem 26182 dgrcolem1 26207 dgrcolem2 26208 quotlem 26236 quotcl2 26238 quotdgr 26239 sinperlem 26417 ptolemy 26433 tangtx 26442 sinkpi 26459 efif1olem2 26480 logrnaddcl 26511 logneg 26525 logimul 26551 cxpadd 26616 binom4 26788 atanf 26818 atanneg 26845 atancj 26848 efiatan 26850 atanlogaddlem 26851 atanlogadd 26852 atanlogsublem 26853 atanlogsub 26854 efiatan2 26855 2efiatan 26856 tanatan 26857 cosatan 26859 cosatanne0 26860 atantan 26861 atanbndlem 26863 atans2 26869 dvatan 26873 atantayl 26875 efrlim 26907 efrlimOLD 26908 dfef2 26909 gamcvg2lem 26997 ftalem7 27017 prmorcht 27116 bposlem9 27231 lgsquad2lem1 27323 2sqlem2 27357 cncph 30801 hhssnv 31246 hoadddir 31786 superpos 32336 knoppcnlem8 36565 cos2h 37671 tan2h 37672 ftc1anclem3 37755 ftc1anclem7 37759 ftc1anclem8 37760 ftc1anc 37761 facp2 42256 sumcubes 42431 fsumsermpt 45703 stirlinglem5 46200 stirlinglem7 46202 cnapbmcpd 47419 fmtnodvds 47668 opoeALTV 47807 mogoldbblem 47844 |
| Copyright terms: Public domain | W3C validator |