| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addcl 11187, for naming consistency with addcli 11239. Use this theorem instead of ax-addcl 11187 or axaddcl 11163. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 11187 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 + caddc 11130 |
| This theorem was proved from axioms: ax-addcl 11187 |
| This theorem is referenced by: mpoaddf 11221 adddir 11224 0cn 11225 addcli 11239 addcld 11252 muladd11 11403 peano2cn 11405 muladd11r 11446 add4 11454 0cnALT2 11469 negeu 11470 pncan 11486 2addsub 11494 addsubeq4 11495 nppcan2 11512 pnpcan 11520 ppncan 11523 muladd 11667 mulsub 11678 recex 11867 muleqadd 11879 conjmul 11956 halfaddsubcl 12471 halfaddsub 12472 serf 14046 seradd 14060 sersub 14061 binom3 14240 bernneq 14245 lswccatn0lsw 14607 revccat 14782 2cshwcshw 14842 shftlem 15085 shftval2 15092 shftval5 15095 2shfti 15097 crre 15131 crim 15132 cjadd 15158 addcj 15165 sqabsadd 15299 absreimsq 15309 absreim 15310 abstri 15347 sqreulem 15376 sqreu 15377 addcn2 15608 o1add 15628 climadd 15646 clim2ser 15669 clim2ser2 15670 isermulc2 15672 isercolllem3 15681 summolem3 15728 summolem2a 15729 fsumcl 15747 fsummulc2 15798 fsumrelem 15821 binom 15844 isumsplit 15854 risefacval2 16024 risefaccl 16029 risefallfac 16038 risefacp1 16043 binomfallfac 16055 binomrisefac 16056 bpoly3 16072 efcj 16106 ef4p 16129 tanval3 16150 efi4p 16153 sinadd 16180 cosadd 16181 tanadd 16183 addsin 16186 demoivreALT 16217 opoe 16380 pythagtriplem4 16837 pythagtriplem12 16844 pythagtriplem14 16846 pythagtriplem16 16848 gzaddcl 16955 cnaddablx 19847 cnaddabl 19848 cncrng 21349 cncrngOLD 21350 cnperf 24758 cnlmod 25089 cnstrcvs 25090 cncvs 25094 dvaddbr 25890 dvaddf 25895 dveflem 25933 plyaddcl 26175 plymulcl 26176 plysubcl 26177 coeaddlem 26204 dgrcolem1 26229 dgrcolem2 26230 quotlem 26258 quotcl2 26260 quotdgr 26261 sinperlem 26439 ptolemy 26455 tangtx 26464 sinkpi 26481 efif1olem2 26502 logrnaddcl 26533 logneg 26547 logimul 26573 cxpadd 26638 binom4 26810 atanf 26840 atanneg 26867 atancj 26870 efiatan 26872 atanlogaddlem 26873 atanlogadd 26874 atanlogsublem 26875 atanlogsub 26876 efiatan2 26877 2efiatan 26878 tanatan 26879 cosatan 26881 cosatanne0 26882 atantan 26883 atanbndlem 26885 atans2 26891 dvatan 26895 atantayl 26897 efrlim 26929 efrlimOLD 26930 dfef2 26931 gamcvg2lem 27019 ftalem7 27039 prmorcht 27138 bposlem9 27253 lgsquad2lem1 27345 2sqlem2 27379 cncph 30746 hhssnv 31191 hoadddir 31731 superpos 32281 knoppcnlem8 36464 cos2h 37581 tan2h 37582 ftc1anclem3 37665 ftc1anclem7 37669 ftc1anclem8 37670 ftc1anc 37671 facp2 42102 fac2xp3 42198 sumcubes 42309 fsumsermpt 45556 stirlinglem5 46055 stirlinglem7 46057 cnapbmcpd 47272 fmtnodvds 47506 opoeALTV 47645 mogoldbblem 47682 |
| Copyright terms: Public domain | W3C validator |