![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version |
Description: Alias for ax-addcl 11170, for naming consistency with addcli 11220. Use this theorem instead of ax-addcl 11170 or axaddcl 11146. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 11170 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 + caddc 11113 |
This theorem was proved from axioms: ax-addcl 11170 |
This theorem is referenced by: adddir 11205 0cn 11206 addcli 11220 addcld 11233 muladd11 11384 peano2cn 11386 muladd11r 11427 add4 11434 0cnALT2 11449 negeu 11450 pncan 11466 2addsub 11474 addsubeq4 11475 nppcan2 11491 pnpcan 11499 ppncan 11502 muladd 11646 mulsub 11657 recex 11846 muleqadd 11858 conjmul 11931 halfaddsubcl 12444 halfaddsub 12445 serf 13996 seradd 14010 sersub 14011 binom3 14187 bernneq 14192 lswccatn0lsw 14541 revccat 14716 2cshwcshw 14776 shftlem 15015 shftval2 15022 shftval5 15025 2shfti 15027 crre 15061 crim 15062 cjadd 15088 addcj 15095 sqabsadd 15229 absreimsq 15239 absreim 15240 abstri 15277 sqreulem 15306 sqreu 15307 addcn2 15538 o1add 15558 climadd 15576 clim2ser 15601 clim2ser2 15602 isermulc2 15604 isercolllem3 15613 summolem3 15660 summolem2a 15661 fsumcl 15679 fsummulc2 15730 fsumrelem 15753 binom 15776 isumsplit 15786 risefacval2 15954 risefaccl 15959 risefallfac 15968 risefacp1 15973 binomfallfac 15985 binomrisefac 15986 bpoly3 16002 efcj 16035 ef4p 16056 tanval3 16077 efi4p 16080 sinadd 16107 cosadd 16108 tanadd 16110 addsin 16113 demoivreALT 16144 opoe 16306 pythagtriplem4 16752 pythagtriplem12 16759 pythagtriplem14 16761 pythagtriplem16 16763 gzaddcl 16870 cnaddablx 19736 cnaddabl 19737 cncrng 20966 cnperf 24336 cnlmod 24656 cnstrcvs 24657 cncvs 24661 dvaddbr 25455 dvaddf 25459 dveflem 25496 plyaddcl 25734 plymulcl 25735 plysubcl 25736 coeaddlem 25763 dgrcolem1 25787 dgrcolem2 25788 quotlem 25813 quotcl2 25815 quotdgr 25816 sinperlem 25990 ptolemy 26006 tangtx 26015 sinkpi 26031 efif1olem2 26052 logrnaddcl 26083 logneg 26096 logimul 26122 cxpadd 26187 binom4 26355 atanf 26385 atanneg 26412 atancj 26415 efiatan 26417 atanlogaddlem 26418 atanlogadd 26419 atanlogsublem 26420 atanlogsub 26421 efiatan2 26422 2efiatan 26423 tanatan 26424 cosatan 26426 cosatanne0 26427 atantan 26428 atanbndlem 26430 atans2 26436 dvatan 26440 atantayl 26442 efrlim 26474 dfef2 26475 gamcvg2lem 26563 ftalem7 26583 prmorcht 26682 bposlem9 26795 lgsquad2lem1 26887 2sqlem2 26921 cncph 30072 hhssnv 30517 hoadddir 31057 superpos 31607 knoppcnlem8 35376 cos2h 36479 tan2h 36480 ftc1anclem3 36563 ftc1anclem7 36567 ftc1anclem8 36568 ftc1anc 36569 facp2 40959 fac2xp3 41020 sumcubes 41211 fsumsermpt 44295 stirlinglem5 44794 stirlinglem7 44796 cnapbmcpd 46003 fmtnodvds 46212 opoeALTV 46351 mogoldbblem 46388 |
Copyright terms: Public domain | W3C validator |