| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version | ||
| Description: Alias for ax-addcl 11063, for naming consistency with addcli 11115. Use this theorem instead of ax-addcl 11063 or axaddcl 11039. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 11063 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 + caddc 11006 |
| This theorem was proved from axioms: ax-addcl 11063 |
| This theorem is referenced by: mpoaddf 11097 adddir 11100 0cn 11101 addcli 11115 addcld 11128 muladd11 11280 peano2cn 11282 muladd11r 11323 add4 11331 0cnALT2 11346 negeu 11347 pncan 11363 2addsub 11371 addsubeq4 11372 nppcan2 11389 pnpcan 11397 ppncan 11400 muladd 11546 mulsub 11557 recex 11746 muleqadd 11758 conjmul 11835 halfaddsubcl 12350 halfaddsub 12351 serf 13934 seradd 13948 sersub 13949 binom3 14128 bernneq 14133 lswccatn0lsw 14496 revccat 14670 2cshwcshw 14729 shftlem 14972 shftval2 14979 shftval5 14982 2shfti 14984 crre 15018 crim 15019 cjadd 15045 addcj 15052 sqabsadd 15186 absreimsq 15196 absreim 15197 abstri 15235 sqreulem 15264 sqreu 15265 addcn2 15498 o1add 15518 climadd 15536 clim2ser 15559 clim2ser2 15560 isermulc2 15562 isercolllem3 15571 summolem3 15618 summolem2a 15619 fsumcl 15637 fsummulc2 15688 fsumrelem 15711 binom 15734 isumsplit 15744 risefacval2 15914 risefaccl 15919 risefallfac 15928 risefacp1 15933 binomfallfac 15945 binomrisefac 15946 bpoly3 15962 efcj 15996 ef4p 16019 tanval3 16040 efi4p 16043 sinadd 16070 cosadd 16071 tanadd 16073 addsin 16076 demoivreALT 16107 opoe 16271 pythagtriplem4 16728 pythagtriplem12 16735 pythagtriplem14 16737 pythagtriplem16 16739 gzaddcl 16846 cnaddablx 19778 cnaddabl 19779 cncrng 21323 cncrngOLD 21324 cnperf 24734 cnlmod 25065 cnstrcvs 25066 cncvs 25070 dvaddbr 25865 dvaddf 25870 dveflem 25908 plyaddcl 26150 plymulcl 26151 plysubcl 26152 coeaddlem 26179 dgrcolem1 26204 dgrcolem2 26205 quotlem 26233 quotcl2 26235 quotdgr 26236 sinperlem 26414 ptolemy 26430 tangtx 26439 sinkpi 26456 efif1olem2 26477 logrnaddcl 26508 logneg 26522 logimul 26548 cxpadd 26613 binom4 26785 atanf 26815 atanneg 26842 atancj 26845 efiatan 26847 atanlogaddlem 26848 atanlogadd 26849 atanlogsublem 26850 atanlogsub 26851 efiatan2 26852 2efiatan 26853 tanatan 26854 cosatan 26856 cosatanne0 26857 atantan 26858 atanbndlem 26860 atans2 26866 dvatan 26870 atantayl 26872 efrlim 26904 efrlimOLD 26905 dfef2 26906 gamcvg2lem 26994 ftalem7 27014 prmorcht 27113 bposlem9 27228 lgsquad2lem1 27320 2sqlem2 27354 cncph 30794 hhssnv 31239 hoadddir 31779 superpos 32329 knoppcnlem8 36533 cos2h 37650 tan2h 37651 ftc1anclem3 37734 ftc1anclem7 37738 ftc1anclem8 37739 ftc1anc 37740 facp2 42175 sumcubes 42345 fsumsermpt 45618 stirlinglem5 46115 stirlinglem7 46117 cnapbmcpd 47325 fmtnodvds 47574 opoeALTV 47713 mogoldbblem 47750 |
| Copyright terms: Public domain | W3C validator |