Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version |
Description: Alias for ax-addcl 10862, for naming consistency with addcli 10912. Use this theorem instead of ax-addcl 10862 or axaddcl 10838. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 10862 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 |
This theorem was proved from axioms: ax-addcl 10862 |
This theorem is referenced by: adddir 10897 0cn 10898 addcli 10912 addcld 10925 muladd11 11075 peano2cn 11077 muladd11r 11118 add4 11125 0cnALT2 11140 negeu 11141 pncan 11157 2addsub 11165 addsubeq4 11166 nppcan2 11182 pnpcan 11190 ppncan 11193 muladd 11337 mulsub 11348 recex 11537 muleqadd 11549 conjmul 11622 halfaddsubcl 12135 halfaddsub 12136 serf 13679 seradd 13693 sersub 13694 binom3 13867 bernneq 13872 lswccatn0lsw 14224 revccat 14407 2cshwcshw 14466 shftlem 14707 shftval2 14714 shftval5 14717 2shfti 14719 crre 14753 crim 14754 cjadd 14780 addcj 14787 sqabsadd 14922 absreimsq 14932 absreim 14933 abstri 14970 sqreulem 14999 sqreu 15000 addcn2 15231 o1add 15251 climadd 15269 clim2ser 15294 clim2ser2 15295 isermulc2 15297 isercolllem3 15306 summolem3 15354 summolem2a 15355 fsumcl 15373 fsummulc2 15424 fsumrelem 15447 binom 15470 isumsplit 15480 risefacval2 15648 risefaccl 15653 risefallfac 15662 risefacp1 15667 binomfallfac 15679 binomrisefac 15680 bpoly3 15696 efcj 15729 ef4p 15750 tanval3 15771 efi4p 15774 sinadd 15801 cosadd 15802 tanadd 15804 addsin 15807 demoivreALT 15838 opoe 16000 pythagtriplem4 16448 pythagtriplem12 16455 pythagtriplem14 16457 pythagtriplem16 16459 gzaddcl 16566 cnaddablx 19384 cnaddabl 19385 cncrng 20531 cnperf 23889 cnlmod 24209 cnstrcvs 24210 cncvs 24214 dvaddbr 25007 dvaddf 25011 dveflem 25048 plyaddcl 25286 plymulcl 25287 plysubcl 25288 coeaddlem 25315 dgrcolem1 25339 dgrcolem2 25340 quotlem 25365 quotcl2 25367 quotdgr 25368 sinperlem 25542 ptolemy 25558 tangtx 25567 sinkpi 25583 efif1olem2 25604 logrnaddcl 25635 logneg 25648 logimul 25674 cxpadd 25739 binom4 25905 atanf 25935 atanneg 25962 atancj 25965 efiatan 25967 atanlogaddlem 25968 atanlogadd 25969 atanlogsublem 25970 atanlogsub 25971 efiatan2 25972 2efiatan 25973 tanatan 25974 cosatan 25976 cosatanne0 25977 atantan 25978 atanbndlem 25980 atans2 25986 dvatan 25990 atantayl 25992 efrlim 26024 dfef2 26025 gamcvg2lem 26113 ftalem7 26133 prmorcht 26232 bposlem9 26345 lgsquad2lem1 26437 2sqlem2 26471 cncph 29082 hhssnv 29527 hoadddir 30067 superpos 30617 knoppcnlem8 34607 cos2h 35695 tan2h 35696 ftc1anclem3 35779 ftc1anclem7 35783 ftc1anclem8 35784 ftc1anc 35785 facp2 40027 fac2xp3 40088 fsumsermpt 43010 stirlinglem5 43509 stirlinglem7 43511 cnapbmcpd 44675 fmtnodvds 44884 opoeALTV 45023 mogoldbblem 45060 |
Copyright terms: Public domain | W3C validator |