![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcl | Structured version Visualization version GIF version |
Description: Alias for ax-addcl 11244, for naming consistency with addcli 11296. Use this theorem instead of ax-addcl 11244 or axaddcl 11220. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 11244 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 |
This theorem was proved from axioms: ax-addcl 11244 |
This theorem is referenced by: mpoaddf 11278 adddir 11281 0cn 11282 addcli 11296 addcld 11309 muladd11 11460 peano2cn 11462 muladd11r 11503 add4 11510 0cnALT2 11525 negeu 11526 pncan 11542 2addsub 11550 addsubeq4 11551 nppcan2 11567 pnpcan 11575 ppncan 11578 muladd 11722 mulsub 11733 recex 11922 muleqadd 11934 conjmul 12011 halfaddsubcl 12525 halfaddsub 12526 serf 14081 seradd 14095 sersub 14096 binom3 14273 bernneq 14278 lswccatn0lsw 14639 revccat 14814 2cshwcshw 14874 shftlem 15117 shftval2 15124 shftval5 15127 2shfti 15129 crre 15163 crim 15164 cjadd 15190 addcj 15197 sqabsadd 15331 absreimsq 15341 absreim 15342 abstri 15379 sqreulem 15408 sqreu 15409 addcn2 15640 o1add 15660 climadd 15678 clim2ser 15703 clim2ser2 15704 isermulc2 15706 isercolllem3 15715 summolem3 15762 summolem2a 15763 fsumcl 15781 fsummulc2 15832 fsumrelem 15855 binom 15878 isumsplit 15888 risefacval2 16058 risefaccl 16063 risefallfac 16072 risefacp1 16077 binomfallfac 16089 binomrisefac 16090 bpoly3 16106 efcj 16140 ef4p 16161 tanval3 16182 efi4p 16185 sinadd 16212 cosadd 16213 tanadd 16215 addsin 16218 demoivreALT 16249 opoe 16411 pythagtriplem4 16866 pythagtriplem12 16873 pythagtriplem14 16875 pythagtriplem16 16877 gzaddcl 16984 cnaddablx 19910 cnaddabl 19911 cncrng 21424 cncrngOLD 21425 cnperf 24861 cnlmod 25192 cnstrcvs 25193 cncvs 25197 dvaddbr 25994 dvaddf 25999 dveflem 26037 plyaddcl 26279 plymulcl 26280 plysubcl 26281 coeaddlem 26308 dgrcolem1 26333 dgrcolem2 26334 quotlem 26360 quotcl2 26362 quotdgr 26363 sinperlem 26540 ptolemy 26556 tangtx 26565 sinkpi 26582 efif1olem2 26603 logrnaddcl 26634 logneg 26648 logimul 26674 cxpadd 26739 binom4 26911 atanf 26941 atanneg 26968 atancj 26971 efiatan 26973 atanlogaddlem 26974 atanlogadd 26975 atanlogsublem 26976 atanlogsub 26977 efiatan2 26978 2efiatan 26979 tanatan 26980 cosatan 26982 cosatanne0 26983 atantan 26984 atanbndlem 26986 atans2 26992 dvatan 26996 atantayl 26998 efrlim 27030 efrlimOLD 27031 dfef2 27032 gamcvg2lem 27120 ftalem7 27140 prmorcht 27239 bposlem9 27354 lgsquad2lem1 27446 2sqlem2 27480 cncph 30851 hhssnv 31296 hoadddir 31836 superpos 32386 knoppcnlem8 36466 cos2h 37571 tan2h 37572 ftc1anclem3 37655 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 facp2 42100 fac2xp3 42196 sumcubes 42301 fsumsermpt 45500 stirlinglem5 45999 stirlinglem7 46001 cnapbmcpd 47210 fmtnodvds 47418 opoeALTV 47557 mogoldbblem 47594 |
Copyright terms: Public domain | W3C validator |