![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axaddcl | Structured version Visualization version GIF version |
Description: Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 11204 be used later. Instead, in most cases use addcl 11226. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddcl | β’ ((π΄ β β β§ π΅ β β) β (π΄ + π΅) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axaddf 11174 | . 2 β’ + :(β Γ β)βΆβ | |
2 | 1 | fovcl 7553 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄ + π΅) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2098 (class class class)co 7424 βcc 11142 + caddc 11147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-oadd 8495 df-omul 8496 df-er 8729 df-ec 8731 df-qs 8735 df-ni 10901 df-pli 10902 df-mi 10903 df-lti 10904 df-plpq 10937 df-mpq 10938 df-ltpq 10939 df-enq 10940 df-nq 10941 df-erq 10942 df-plq 10943 df-mq 10944 df-1nq 10945 df-rq 10946 df-ltnq 10947 df-np 11010 df-plp 11012 df-ltp 11014 df-enr 11084 df-nr 11085 df-plr 11086 df-c 11150 df-add 11155 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |