Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-icn | Structured version Visualization version GIF version |
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 10812. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 10779 | . 2 class i | |
2 | cc 10775 | . 2 class ℂ | |
3 | 1, 2 | wcel 2112 | 1 wff i ∈ ℂ |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 10873 mulid1 10879 mul02lem2 11057 mul02 11058 addid1 11060 cnegex 11061 cnegex2 11062 0cnALT 11114 0cnALT2 11115 negicn 11127 ine0 11315 ixi 11509 recextlem1 11510 recextlem2 11511 recex 11512 rimul 11869 cru 11870 crne0 11871 cju 11874 it0e0 12100 2mulicn 12101 2muline0 12102 cnref1o 12629 irec 13821 i2 13822 i3 13823 i4 13824 iexpcyc 13826 crreczi 13846 imre 14722 reim 14723 crre 14728 crim 14729 remim 14731 mulre 14735 cjreb 14737 recj 14738 reneg 14739 readd 14740 remullem 14742 imcj 14746 imneg 14747 imadd 14748 cjadd 14755 cjneg 14761 imval2 14765 rei 14770 imi 14771 cji 14773 cjreim 14774 cjreim2 14775 rennim 14853 cnpart 14854 sqrtneglem 14881 sqrtneg 14882 sqrtm1 14890 absi 14901 absreimsq 14907 absreim 14908 absimle 14924 abs1m 14950 sqreulem 14974 sqreu 14975 bhmafibid1 15080 caucvgr 15290 sinf 15736 cosf 15737 tanval2 15745 tanval3 15746 resinval 15747 recosval 15748 efi4p 15749 resin4p 15750 recos4p 15751 resincl 15752 recoscl 15753 sinneg 15758 cosneg 15759 efival 15764 efmival 15765 sinhval 15766 coshval 15767 retanhcl 15771 tanhlt1 15772 tanhbnd 15773 efeul 15774 sinadd 15776 cosadd 15777 ef01bndlem 15796 sin01bnd 15797 cos01bnd 15798 absef 15809 absefib 15810 efieq1re 15811 demoivre 15812 demoivreALT 15813 nthruc 15864 igz 16538 4sqlem17 16565 cnsubrg 20545 cnrehmeo 23997 cmodscexp 24165 ncvspi 24200 cphipval2 24285 4cphipval2 24286 cphipval 24287 itg0 24824 itgz 24825 itgcl 24828 ibl0 24831 iblcnlem1 24832 itgcnlem 24834 itgneg 24848 iblss 24849 iblss2 24850 itgss 24856 itgeqa 24858 iblconst 24862 itgconst 24863 itgadd 24869 iblabs 24873 iblabsr 24874 iblmulc2 24875 itgmulc2 24878 itgsplit 24880 dvsincos 25025 iaa 25365 sincn 25483 coscn 25484 efhalfpi 25508 ef2kpi 25515 efper 25516 sinperlem 25517 efimpi 25528 pige3ALT 25556 sineq0 25560 efeq1 25564 tanregt0 25575 efif1olem4 25581 efifo 25583 eff1olem 25584 circgrp 25588 circsubm 25589 logneg 25623 logm1 25624 lognegb 25625 eflogeq 25637 efiarg 25642 cosargd 25643 logimul 25649 logneg2 25650 abslogle 25653 tanarg 25654 logcn 25682 logf1o2 25685 cxpsqrtlem 25737 cxpsqrt 25738 root1eq1 25788 cxpeq 25790 ang180lem1 25839 ang180lem2 25840 ang180lem3 25841 ang180lem4 25842 1cubrlem 25871 1cubr 25872 asinlem 25898 asinlem2 25899 asinlem3a 25900 asinlem3 25901 asinf 25902 atandm2 25907 atandm3 25908 atanf 25910 asinneg 25916 efiasin 25918 sinasin 25919 asinsinlem 25921 asinsin 25922 asin1 25924 asinbnd 25929 cosasin 25934 atanneg 25937 atancj 25940 efiatan 25942 atanlogaddlem 25943 atanlogadd 25944 atanlogsublem 25945 atanlogsub 25946 efiatan2 25947 2efiatan 25948 tanatan 25949 cosatan 25951 atantan 25953 atanbndlem 25955 atans2 25961 dvatan 25965 atantayl 25967 atantayl2 25968 log2cnv 25974 basellem3 26112 2sqlem2 26446 nvpi 28905 ipval2 28945 4ipval2 28946 ipval3 28947 ipidsq 28948 dipcl 28950 dipcj 28952 dip0r 28955 dipcn 28958 ip1ilem 29064 ipasslem10 29077 ipasslem11 29078 polid2i 29395 polidi 29396 lnopeq0lem1 30243 lnopeq0i 30245 lnophmlem2 30255 ccfldextdgrr 31619 cnre2csqima 31738 efmul2picn 32451 itgexpif 32461 vtscl 32493 vtsprod 32494 circlemeth 32495 logi 33581 iexpire 33582 itgaddnc 35743 iblabsnc 35747 iblmulc2nc 35748 itgmulc2nc 35751 ftc1anclem3 35758 ftc1anclem6 35761 ftc1anclem7 35762 ftc1anclem8 35763 ftc1anc 35764 dvasin 35767 areacirclem4 35774 cntotbnd 35860 sn-1ne2 40188 re1m1e0m0 40273 sn-addid2 40280 sn-it0e0 40290 sn-negex12 40291 reixi 40297 sn-1ticom 40309 sn-mulid2 40310 it1ei 40311 ipiiie0 40312 sn-0tie0 40314 sn-mul02 40315 sn-inelr 40328 itrere 40329 retire 40330 cnreeu 40331 proot1ex 40914 sqrtcval 41110 sqrtcval2 41111 resqrtvalex 41114 imsqrtvalex 41115 sineq0ALT 42419 iblsplit 43370 sqrtnegnre 44660 requad01 44934 sinh-conventional 46300 |
Copyright terms: Public domain | W3C validator |