![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-icn | Structured version Visualization version GIF version |
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 11187. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 11154 | . 2 class i | |
2 | cc 11150 | . 2 class ℂ | |
3 | 1, 2 | wcel 2105 | 1 wff i ∈ ℂ |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 11250 mulrid 11256 mul02lem2 11435 mul02 11436 addrid 11438 cnegex 11439 cnegex2 11440 0cnALT 11493 0cnALT2 11494 negicn 11506 ine0 11695 ixi 11889 recextlem1 11890 recextlem2 11891 recex 11892 rimul 12254 cru 12255 crne0 12256 cju 12259 it0e0 12485 2mulicn 12486 2muline0 12487 cnref1o 13024 irec 14236 i2 14237 i3 14238 i4 14239 iexpcyc 14242 crreczi 14263 imre 15143 reim 15144 crre 15149 crim 15150 remim 15152 mulre 15156 cjreb 15158 recj 15159 reneg 15160 readd 15161 remullem 15163 imcj 15167 imneg 15168 imadd 15169 cjadd 15176 cjneg 15182 imval2 15186 rei 15191 imi 15192 cji 15194 cjreim 15195 cjreim2 15196 rennim 15274 cnpart 15275 sqrtneglem 15301 sqrtneg 15302 sqrtm1 15310 absi 15321 absreimsq 15327 absreim 15328 absimle 15344 abs1m 15370 sqreulem 15394 sqreu 15395 bhmafibid1 15500 caucvgr 15708 sinf 16156 cosf 16157 tanval2 16165 tanval3 16166 resinval 16167 recosval 16168 efi4p 16169 resin4p 16170 recos4p 16171 resincl 16172 recoscl 16173 sinneg 16178 cosneg 16179 efival 16184 efmival 16185 sinhval 16186 coshval 16187 retanhcl 16191 tanhlt1 16192 tanhbnd 16193 efeul 16194 sinadd 16196 cosadd 16197 ef01bndlem 16216 sin01bnd 16217 cos01bnd 16218 absef 16229 absefib 16230 efieq1re 16231 demoivre 16232 demoivreALT 16233 nthruc 16284 igz 16967 4sqlem17 16994 cnsubrg 21462 cnrehmeo 24997 cnrehmeoOLD 24998 cmodscexp 25167 ncvspi 25203 cphipval2 25288 4cphipval2 25289 cphipval 25290 itg0 25829 itgz 25830 itgcl 25833 ibl0 25836 iblcnlem1 25837 itgcnlem 25839 itgneg 25853 iblss 25854 iblss2 25855 itgss 25861 itgeqa 25863 iblconst 25867 itgconst 25868 itgadd 25874 iblabs 25878 iblabsr 25879 iblmulc2 25880 itgmulc2 25883 itgsplit 25885 dvsincos 26033 iaa 26381 sincn 26502 coscn 26503 efhalfpi 26527 ef2kpi 26534 efper 26535 sinperlem 26536 efimpi 26547 pige3ALT 26576 sineq0 26580 efeq1 26584 tanregt0 26595 efif1olem4 26601 efifo 26603 eff1olem 26604 circgrp 26608 circsubm 26609 logi 26643 logneg 26644 logm1 26645 lognegb 26646 eflogeq 26658 efiarg 26663 cosargd 26664 logimul 26670 logneg2 26671 abslogle 26674 tanarg 26675 logcn 26703 logf1o2 26706 cxpsqrtlem 26758 cxpsqrt 26759 root1eq1 26812 cxpeq 26814 ang180lem1 26866 ang180lem2 26867 ang180lem3 26868 ang180lem4 26869 1cubrlem 26898 1cubr 26899 asinlem 26925 asinlem2 26926 asinlem3a 26927 asinlem3 26928 asinf 26929 atandm2 26934 atandm3 26935 atanf 26937 asinneg 26943 efiasin 26945 sinasin 26946 asinsinlem 26948 asinsin 26949 asin1 26951 asinbnd 26956 cosasin 26961 atanneg 26964 atancj 26967 efiatan 26969 atanlogaddlem 26970 atanlogadd 26971 atanlogsublem 26972 atanlogsub 26973 efiatan2 26974 2efiatan 26975 tanatan 26976 cosatan 26978 atantan 26980 atanbndlem 26982 atans2 26988 dvatan 26992 atantayl 26994 atantayl2 26995 log2cnv 27001 basellem3 27140 2sqlem2 27476 nvpi 30695 ipval2 30735 4ipval2 30736 ipval3 30737 ipidsq 30738 dipcl 30740 dipcj 30742 dip0r 30745 dipcn 30748 ip1ilem 30854 ipasslem10 30867 ipasslem11 30868 polid2i 31185 polidi 31186 lnopeq0lem1 32033 lnopeq0i 32035 lnophmlem2 32045 re0cj 32759 ccfldextdgrr 33696 constrelextdg2 33751 cnre2csqima 33871 efmul2picn 34589 itgexpif 34599 vtscl 34631 vtsprod 34632 circlemeth 34633 iexpire 35714 itgaddnc 37666 iblabsnc 37670 iblmulc2nc 37671 itgmulc2nc 37674 ftc1anclem3 37681 ftc1anclem6 37684 ftc1anclem7 37685 ftc1anclem8 37686 ftc1anc 37687 dvasin 37690 areacirclem4 37697 cntotbnd 37782 sn-1ne2 42278 0tie0 42328 it1ei 42329 1tiei 42330 itrere 42331 retire 42332 ef11d 42353 cxp112d 42355 cxp111d 42356 cxpi11d 42357 re1m1e0m0 42403 sn-addlid 42410 sn-it0e0 42421 sn-negex12 42422 reixi 42428 sn-1ticom 42440 sn-mullid 42441 sn-it1ei 42442 ipiiie0 42443 sn-0tie0 42445 sn-mul02 42446 sn-inelr 42473 sn-itrere 42474 sn-retire 42475 cnreeu 42476 proot1ex 43184 sqrtcval 43630 sqrtcval2 43631 resqrtvalex 43634 imsqrtvalex 43635 sineq0ALT 44934 iblsplit 45921 sqrtnegnre 47256 requad01 47545 sinh-conventional 48969 |
Copyright terms: Public domain | W3C validator |