Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-icn | Structured version Visualization version GIF version |
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 10906. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 10873 | . 2 class i | |
2 | cc 10869 | . 2 class ℂ | |
3 | 1, 2 | wcel 2106 | 1 wff i ∈ ℂ |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 10967 mulid1 10973 mul02lem2 11152 mul02 11153 addid1 11155 cnegex 11156 cnegex2 11157 0cnALT 11209 0cnALT2 11210 negicn 11222 ine0 11410 ixi 11604 recextlem1 11605 recextlem2 11606 recex 11607 rimul 11964 cru 11965 crne0 11966 cju 11969 it0e0 12195 2mulicn 12196 2muline0 12197 cnref1o 12725 irec 13918 i2 13919 i3 13920 i4 13921 iexpcyc 13923 crreczi 13943 imre 14819 reim 14820 crre 14825 crim 14826 remim 14828 mulre 14832 cjreb 14834 recj 14835 reneg 14836 readd 14837 remullem 14839 imcj 14843 imneg 14844 imadd 14845 cjadd 14852 cjneg 14858 imval2 14862 rei 14867 imi 14868 cji 14870 cjreim 14871 cjreim2 14872 rennim 14950 cnpart 14951 sqrtneglem 14978 sqrtneg 14979 sqrtm1 14987 absi 14998 absreimsq 15004 absreim 15005 absimle 15021 abs1m 15047 sqreulem 15071 sqreu 15072 bhmafibid1 15177 caucvgr 15387 sinf 15833 cosf 15834 tanval2 15842 tanval3 15843 resinval 15844 recosval 15845 efi4p 15846 resin4p 15847 recos4p 15848 resincl 15849 recoscl 15850 sinneg 15855 cosneg 15856 efival 15861 efmival 15862 sinhval 15863 coshval 15864 retanhcl 15868 tanhlt1 15869 tanhbnd 15870 efeul 15871 sinadd 15873 cosadd 15874 ef01bndlem 15893 sin01bnd 15894 cos01bnd 15895 absef 15906 absefib 15907 efieq1re 15908 demoivre 15909 demoivreALT 15910 nthruc 15961 igz 16635 4sqlem17 16662 cnsubrg 20658 cnrehmeo 24116 cmodscexp 24284 ncvspi 24320 cphipval2 24405 4cphipval2 24406 cphipval 24407 itg0 24944 itgz 24945 itgcl 24948 ibl0 24951 iblcnlem1 24952 itgcnlem 24954 itgneg 24968 iblss 24969 iblss2 24970 itgss 24976 itgeqa 24978 iblconst 24982 itgconst 24983 itgadd 24989 iblabs 24993 iblabsr 24994 iblmulc2 24995 itgmulc2 24998 itgsplit 25000 dvsincos 25145 iaa 25485 sincn 25603 coscn 25604 efhalfpi 25628 ef2kpi 25635 efper 25636 sinperlem 25637 efimpi 25648 pige3ALT 25676 sineq0 25680 efeq1 25684 tanregt0 25695 efif1olem4 25701 efifo 25703 eff1olem 25704 circgrp 25708 circsubm 25709 logneg 25743 logm1 25744 lognegb 25745 eflogeq 25757 efiarg 25762 cosargd 25763 logimul 25769 logneg2 25770 abslogle 25773 tanarg 25774 logcn 25802 logf1o2 25805 cxpsqrtlem 25857 cxpsqrt 25858 root1eq1 25908 cxpeq 25910 ang180lem1 25959 ang180lem2 25960 ang180lem3 25961 ang180lem4 25962 1cubrlem 25991 1cubr 25992 asinlem 26018 asinlem2 26019 asinlem3a 26020 asinlem3 26021 asinf 26022 atandm2 26027 atandm3 26028 atanf 26030 asinneg 26036 efiasin 26038 sinasin 26039 asinsinlem 26041 asinsin 26042 asin1 26044 asinbnd 26049 cosasin 26054 atanneg 26057 atancj 26060 efiatan 26062 atanlogaddlem 26063 atanlogadd 26064 atanlogsublem 26065 atanlogsub 26066 efiatan2 26067 2efiatan 26068 tanatan 26069 cosatan 26071 atantan 26073 atanbndlem 26075 atans2 26081 dvatan 26085 atantayl 26087 atantayl2 26088 log2cnv 26094 basellem3 26232 2sqlem2 26566 nvpi 29029 ipval2 29069 4ipval2 29070 ipval3 29071 ipidsq 29072 dipcl 29074 dipcj 29076 dip0r 29079 dipcn 29082 ip1ilem 29188 ipasslem10 29201 ipasslem11 29202 polid2i 29519 polidi 29520 lnopeq0lem1 30367 lnopeq0i 30369 lnophmlem2 30379 ccfldextdgrr 31742 cnre2csqima 31861 efmul2picn 32576 itgexpif 32586 vtscl 32618 vtsprod 32619 circlemeth 32620 logi 33700 iexpire 33701 itgaddnc 35837 iblabsnc 35841 iblmulc2nc 35842 itgmulc2nc 35845 ftc1anclem3 35852 ftc1anclem6 35855 ftc1anclem7 35856 ftc1anclem8 35857 ftc1anc 35858 dvasin 35861 areacirclem4 35868 cntotbnd 35954 sn-1ne2 40295 re1m1e0m0 40380 sn-addid2 40387 sn-it0e0 40397 sn-negex12 40398 reixi 40404 sn-1ticom 40416 sn-mulid2 40417 it1ei 40418 ipiiie0 40419 sn-0tie0 40421 sn-mul02 40422 sn-inelr 40435 itrere 40436 retire 40437 cnreeu 40438 proot1ex 41026 sqrtcval 41249 sqrtcval2 41250 resqrtvalex 41253 imsqrtvalex 41254 sineq0ALT 42557 iblsplit 43507 sqrtnegnre 44799 requad01 45073 sinh-conventional 46441 |
Copyright terms: Public domain | W3C validator |