![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-icn | Structured version Visualization version GIF version |
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 11145. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 11112 | . 2 class i | |
2 | cc 11108 | . 2 class ℂ | |
3 | 1, 2 | wcel 2107 | 1 wff i ∈ ℂ |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 11206 mulrid 11212 mul02lem2 11391 mul02 11392 addrid 11394 cnegex 11395 cnegex2 11396 0cnALT 11448 0cnALT2 11449 negicn 11461 ine0 11649 ixi 11843 recextlem1 11844 recextlem2 11845 recex 11846 rimul 12203 cru 12204 crne0 12205 cju 12208 it0e0 12434 2mulicn 12435 2muline0 12436 cnref1o 12969 irec 14165 i2 14166 i3 14167 i4 14168 iexpcyc 14171 crreczi 14191 imre 15055 reim 15056 crre 15061 crim 15062 remim 15064 mulre 15068 cjreb 15070 recj 15071 reneg 15072 readd 15073 remullem 15075 imcj 15079 imneg 15080 imadd 15081 cjadd 15088 cjneg 15094 imval2 15098 rei 15103 imi 15104 cji 15106 cjreim 15107 cjreim2 15108 rennim 15186 cnpart 15187 sqrtneglem 15213 sqrtneg 15214 sqrtm1 15222 absi 15233 absreimsq 15239 absreim 15240 absimle 15256 abs1m 15282 sqreulem 15306 sqreu 15307 bhmafibid1 15412 caucvgr 15622 sinf 16067 cosf 16068 tanval2 16076 tanval3 16077 resinval 16078 recosval 16079 efi4p 16080 resin4p 16081 recos4p 16082 resincl 16083 recoscl 16084 sinneg 16089 cosneg 16090 efival 16095 efmival 16096 sinhval 16097 coshval 16098 retanhcl 16102 tanhlt1 16103 tanhbnd 16104 efeul 16105 sinadd 16107 cosadd 16108 ef01bndlem 16127 sin01bnd 16128 cos01bnd 16129 absef 16140 absefib 16141 efieq1re 16142 demoivre 16143 demoivreALT 16144 nthruc 16195 igz 16867 4sqlem17 16894 cnsubrg 21005 cnrehmeo 24469 cmodscexp 24637 ncvspi 24673 cphipval2 24758 4cphipval2 24759 cphipval 24760 itg0 25297 itgz 25298 itgcl 25301 ibl0 25304 iblcnlem1 25305 itgcnlem 25307 itgneg 25321 iblss 25322 iblss2 25323 itgss 25329 itgeqa 25331 iblconst 25335 itgconst 25336 itgadd 25342 iblabs 25346 iblabsr 25347 iblmulc2 25348 itgmulc2 25351 itgsplit 25353 dvsincos 25498 iaa 25838 sincn 25956 coscn 25957 efhalfpi 25981 ef2kpi 25988 efper 25989 sinperlem 25990 efimpi 26001 pige3ALT 26029 sineq0 26033 efeq1 26037 tanregt0 26048 efif1olem4 26054 efifo 26056 eff1olem 26057 circgrp 26061 circsubm 26062 logneg 26096 logm1 26097 lognegb 26098 eflogeq 26110 efiarg 26115 cosargd 26116 logimul 26122 logneg2 26123 abslogle 26126 tanarg 26127 logcn 26155 logf1o2 26158 cxpsqrtlem 26210 cxpsqrt 26211 root1eq1 26263 cxpeq 26265 ang180lem1 26314 ang180lem2 26315 ang180lem3 26316 ang180lem4 26317 1cubrlem 26346 1cubr 26347 asinlem 26373 asinlem2 26374 asinlem3a 26375 asinlem3 26376 asinf 26377 atandm2 26382 atandm3 26383 atanf 26385 asinneg 26391 efiasin 26393 sinasin 26394 asinsinlem 26396 asinsin 26397 asin1 26399 asinbnd 26404 cosasin 26409 atanneg 26412 atancj 26415 efiatan 26417 atanlogaddlem 26418 atanlogadd 26419 atanlogsublem 26420 atanlogsub 26421 efiatan2 26422 2efiatan 26423 tanatan 26424 cosatan 26426 atantan 26428 atanbndlem 26430 atans2 26436 dvatan 26440 atantayl 26442 atantayl2 26443 log2cnv 26449 basellem3 26587 2sqlem2 26921 nvpi 29920 ipval2 29960 4ipval2 29961 ipval3 29962 ipidsq 29963 dipcl 29965 dipcj 29967 dip0r 29970 dipcn 29973 ip1ilem 30079 ipasslem10 30092 ipasslem11 30093 polid2i 30410 polidi 30411 lnopeq0lem1 31258 lnopeq0i 31260 lnophmlem2 31270 ccfldextdgrr 32746 cnre2csqima 32891 efmul2picn 33608 itgexpif 33618 vtscl 33650 vtsprod 33651 circlemeth 33652 logi 34704 iexpire 34705 gg-cnrehmeo 35171 itgaddnc 36548 iblabsnc 36552 iblmulc2nc 36553 itgmulc2nc 36556 ftc1anclem3 36563 ftc1anclem6 36566 ftc1anclem7 36567 ftc1anclem8 36568 ftc1anc 36569 dvasin 36572 areacirclem4 36579 cntotbnd 36664 sn-1ne2 41179 re1m1e0m0 41270 sn-addlid 41277 sn-it0e0 41288 sn-negex12 41289 reixi 41295 sn-1ticom 41307 sn-mullid 41308 it1ei 41309 ipiiie0 41310 sn-0tie0 41312 sn-mul02 41313 sn-inelr 41338 itrere 41339 retire 41340 cnreeu 41341 proot1ex 41943 sqrtcval 42392 sqrtcval2 42393 resqrtvalex 42396 imsqrtvalex 42397 sineq0ALT 43698 iblsplit 44682 sqrtnegnre 46015 requad01 46289 sinh-conventional 47784 |
Copyright terms: Public domain | W3C validator |