![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-icn | Structured version Visualization version GIF version |
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 11149. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 11116 | . 2 class i | |
2 | cc 11112 | . 2 class ℂ | |
3 | 1, 2 | wcel 2104 | 1 wff i ∈ ℂ |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 11212 mulrid 11218 mul02lem2 11397 mul02 11398 addrid 11400 cnegex 11401 cnegex2 11402 0cnALT 11454 0cnALT2 11455 negicn 11467 ine0 11655 ixi 11849 recextlem1 11850 recextlem2 11851 recex 11852 rimul 12209 cru 12210 crne0 12211 cju 12214 it0e0 12440 2mulicn 12441 2muline0 12442 cnref1o 12975 irec 14171 i2 14172 i3 14173 i4 14174 iexpcyc 14177 crreczi 14197 imre 15061 reim 15062 crre 15067 crim 15068 remim 15070 mulre 15074 cjreb 15076 recj 15077 reneg 15078 readd 15079 remullem 15081 imcj 15085 imneg 15086 imadd 15087 cjadd 15094 cjneg 15100 imval2 15104 rei 15109 imi 15110 cji 15112 cjreim 15113 cjreim2 15114 rennim 15192 cnpart 15193 sqrtneglem 15219 sqrtneg 15220 sqrtm1 15228 absi 15239 absreimsq 15245 absreim 15246 absimle 15262 abs1m 15288 sqreulem 15312 sqreu 15313 bhmafibid1 15418 caucvgr 15628 sinf 16073 cosf 16074 tanval2 16082 tanval3 16083 resinval 16084 recosval 16085 efi4p 16086 resin4p 16087 recos4p 16088 resincl 16089 recoscl 16090 sinneg 16095 cosneg 16096 efival 16101 efmival 16102 sinhval 16103 coshval 16104 retanhcl 16108 tanhlt1 16109 tanhbnd 16110 efeul 16111 sinadd 16113 cosadd 16114 ef01bndlem 16133 sin01bnd 16134 cos01bnd 16135 absef 16146 absefib 16147 efieq1re 16148 demoivre 16149 demoivreALT 16150 nthruc 16201 igz 16873 4sqlem17 16900 cnsubrg 21207 cnrehmeo 24700 cnrehmeoOLD 24701 cmodscexp 24870 ncvspi 24906 cphipval2 24991 4cphipval2 24992 cphipval 24993 itg0 25531 itgz 25532 itgcl 25535 ibl0 25538 iblcnlem1 25539 itgcnlem 25541 itgneg 25555 iblss 25556 iblss2 25557 itgss 25563 itgeqa 25565 iblconst 25569 itgconst 25570 itgadd 25576 iblabs 25580 iblabsr 25581 iblmulc2 25582 itgmulc2 25585 itgsplit 25587 dvsincos 25732 iaa 26072 sincn 26190 coscn 26191 efhalfpi 26215 ef2kpi 26222 efper 26223 sinperlem 26224 efimpi 26235 pige3ALT 26263 sineq0 26267 efeq1 26271 tanregt0 26282 efif1olem4 26288 efifo 26290 eff1olem 26291 circgrp 26295 circsubm 26296 logneg 26330 logm1 26331 lognegb 26332 eflogeq 26344 efiarg 26349 cosargd 26350 logimul 26356 logneg2 26357 abslogle 26360 tanarg 26361 logcn 26389 logf1o2 26392 cxpsqrtlem 26444 cxpsqrt 26445 root1eq1 26497 cxpeq 26499 ang180lem1 26548 ang180lem2 26549 ang180lem3 26550 ang180lem4 26551 1cubrlem 26580 1cubr 26581 asinlem 26607 asinlem2 26608 asinlem3a 26609 asinlem3 26610 asinf 26611 atandm2 26616 atandm3 26617 atanf 26619 asinneg 26625 efiasin 26627 sinasin 26628 asinsinlem 26630 asinsin 26631 asin1 26633 asinbnd 26638 cosasin 26643 atanneg 26646 atancj 26649 efiatan 26651 atanlogaddlem 26652 atanlogadd 26653 atanlogsublem 26654 atanlogsub 26655 efiatan2 26656 2efiatan 26657 tanatan 26658 cosatan 26660 atantan 26662 atanbndlem 26664 atans2 26670 dvatan 26674 atantayl 26676 atantayl2 26677 log2cnv 26683 basellem3 26821 2sqlem2 27155 nvpi 30185 ipval2 30225 4ipval2 30226 ipval3 30227 ipidsq 30228 dipcl 30230 dipcj 30232 dip0r 30235 dipcn 30238 ip1ilem 30344 ipasslem10 30357 ipasslem11 30358 polid2i 30675 polidi 30676 lnopeq0lem1 31523 lnopeq0i 31525 lnophmlem2 31535 ccfldextdgrr 33033 cnre2csqima 33187 efmul2picn 33904 itgexpif 33914 vtscl 33946 vtsprod 33947 circlemeth 33948 logi 35006 iexpire 35007 itgaddnc 36853 iblabsnc 36857 iblmulc2nc 36858 itgmulc2nc 36861 ftc1anclem3 36868 ftc1anclem6 36871 ftc1anclem7 36872 ftc1anclem8 36873 ftc1anc 36874 dvasin 36877 areacirclem4 36884 cntotbnd 36969 sn-1ne2 41483 re1m1e0m0 41574 sn-addlid 41581 sn-it0e0 41592 sn-negex12 41593 reixi 41599 sn-1ticom 41611 sn-mullid 41612 it1ei 41613 ipiiie0 41614 sn-0tie0 41616 sn-mul02 41617 sn-inelr 41642 itrere 41643 retire 41644 cnreeu 41645 proot1ex 42247 sqrtcval 42696 sqrtcval2 42697 resqrtvalex 42700 imsqrtvalex 42701 sineq0ALT 44002 iblsplit 44982 sqrtnegnre 46315 requad01 46589 sinh-conventional 47873 |
Copyright terms: Public domain | W3C validator |