![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-icn | Structured version Visualization version GIF version |
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 11219. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 11186 | . 2 class i | |
2 | cc 11182 | . 2 class ℂ | |
3 | 1, 2 | wcel 2108 | 1 wff i ∈ ℂ |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 11282 mulrid 11288 mul02lem2 11467 mul02 11468 addrid 11470 cnegex 11471 cnegex2 11472 0cnALT 11524 0cnALT2 11525 negicn 11537 ine0 11725 ixi 11919 recextlem1 11920 recextlem2 11921 recex 11922 rimul 12284 cru 12285 crne0 12286 cju 12289 it0e0 12515 2mulicn 12516 2muline0 12517 cnref1o 13050 irec 14250 i2 14251 i3 14252 i4 14253 iexpcyc 14256 crreczi 14277 imre 15157 reim 15158 crre 15163 crim 15164 remim 15166 mulre 15170 cjreb 15172 recj 15173 reneg 15174 readd 15175 remullem 15177 imcj 15181 imneg 15182 imadd 15183 cjadd 15190 cjneg 15196 imval2 15200 rei 15205 imi 15206 cji 15208 cjreim 15209 cjreim2 15210 rennim 15288 cnpart 15289 sqrtneglem 15315 sqrtneg 15316 sqrtm1 15324 absi 15335 absreimsq 15341 absreim 15342 absimle 15358 abs1m 15384 sqreulem 15408 sqreu 15409 bhmafibid1 15514 caucvgr 15724 sinf 16172 cosf 16173 tanval2 16181 tanval3 16182 resinval 16183 recosval 16184 efi4p 16185 resin4p 16186 recos4p 16187 resincl 16188 recoscl 16189 sinneg 16194 cosneg 16195 efival 16200 efmival 16201 sinhval 16202 coshval 16203 retanhcl 16207 tanhlt1 16208 tanhbnd 16209 efeul 16210 sinadd 16212 cosadd 16213 ef01bndlem 16232 sin01bnd 16233 cos01bnd 16234 absef 16245 absefib 16246 efieq1re 16247 demoivre 16248 demoivreALT 16249 nthruc 16300 igz 16981 4sqlem17 17008 cnsubrg 21468 cnrehmeo 25003 cnrehmeoOLD 25004 cmodscexp 25173 ncvspi 25209 cphipval2 25294 4cphipval2 25295 cphipval 25296 itg0 25835 itgz 25836 itgcl 25839 ibl0 25842 iblcnlem1 25843 itgcnlem 25845 itgneg 25859 iblss 25860 iblss2 25861 itgss 25867 itgeqa 25869 iblconst 25873 itgconst 25874 itgadd 25880 iblabs 25884 iblabsr 25885 iblmulc2 25886 itgmulc2 25889 itgsplit 25891 dvsincos 26039 iaa 26385 sincn 26506 coscn 26507 efhalfpi 26531 ef2kpi 26538 efper 26539 sinperlem 26540 efimpi 26551 pige3ALT 26580 sineq0 26584 efeq1 26588 tanregt0 26599 efif1olem4 26605 efifo 26607 eff1olem 26608 circgrp 26612 circsubm 26613 logi 26647 logneg 26648 logm1 26649 lognegb 26650 eflogeq 26662 efiarg 26667 cosargd 26668 logimul 26674 logneg2 26675 abslogle 26678 tanarg 26679 logcn 26707 logf1o2 26710 cxpsqrtlem 26762 cxpsqrt 26763 root1eq1 26816 cxpeq 26818 ang180lem1 26870 ang180lem2 26871 ang180lem3 26872 ang180lem4 26873 1cubrlem 26902 1cubr 26903 asinlem 26929 asinlem2 26930 asinlem3a 26931 asinlem3 26932 asinf 26933 atandm2 26938 atandm3 26939 atanf 26941 asinneg 26947 efiasin 26949 sinasin 26950 asinsinlem 26952 asinsin 26953 asin1 26955 asinbnd 26960 cosasin 26965 atanneg 26968 atancj 26971 efiatan 26973 atanlogaddlem 26974 atanlogadd 26975 atanlogsublem 26976 atanlogsub 26977 efiatan2 26978 2efiatan 26979 tanatan 26980 cosatan 26982 atantan 26984 atanbndlem 26986 atans2 26992 dvatan 26996 atantayl 26998 atantayl2 26999 log2cnv 27005 basellem3 27144 2sqlem2 27480 nvpi 30699 ipval2 30739 4ipval2 30740 ipval3 30741 ipidsq 30742 dipcl 30744 dipcj 30746 dip0r 30749 dipcn 30752 ip1ilem 30858 ipasslem10 30871 ipasslem11 30872 polid2i 31189 polidi 31190 lnopeq0lem1 32037 lnopeq0i 32039 lnophmlem2 32049 re0cj 32756 ccfldextdgrr 33682 constrelextdg2 33737 cnre2csqima 33857 efmul2picn 34573 itgexpif 34583 vtscl 34615 vtsprod 34616 circlemeth 34617 iexpire 35697 itgaddnc 37640 iblabsnc 37644 iblmulc2nc 37645 itgmulc2nc 37648 ftc1anclem3 37655 ftc1anclem6 37658 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 dvasin 37664 areacirclem4 37671 cntotbnd 37756 sn-1ne2 42254 0tie0 42304 it1ei 42305 1tiei 42306 itrere 42307 retire 42308 ef11d 42327 cxp112d 42329 cxp111d 42330 cxpi11d 42331 re1m1e0m0 42373 sn-addlid 42380 sn-it0e0 42391 sn-negex12 42392 reixi 42398 sn-1ticom 42410 sn-mullid 42411 sn-it1ei 42412 ipiiie0 42413 sn-0tie0 42415 sn-mul02 42416 sn-inelr 42443 sn-itrere 42444 sn-retire 42445 cnreeu 42446 proot1ex 43157 sqrtcval 43603 sqrtcval2 43604 resqrtvalex 43607 imsqrtvalex 43608 sineq0ALT 44908 iblsplit 45887 sqrtnegnre 47222 requad01 47495 sinh-conventional 48831 |
Copyright terms: Public domain | W3C validator |