Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-icn | Structured version Visualization version GIF version |
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 10610. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 10577 | . 2 class i | |
2 | cc 10573 | . 2 class ℂ | |
3 | 1, 2 | wcel 2111 | 1 wff i ∈ ℂ |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 10671 mulid1 10677 mul02lem2 10855 mul02 10856 addid1 10858 cnegex 10859 cnegex2 10860 0cnALT 10912 0cnALT2 10913 negicn 10925 ine0 11113 ixi 11307 recextlem1 11308 recextlem2 11309 recex 11310 rimul 11665 cru 11666 crne0 11667 cju 11670 it0e0 11896 2mulicn 11897 2muline0 11898 cnref1o 12425 irec 13614 i2 13615 i3 13616 i4 13617 iexpcyc 13619 crreczi 13639 imre 14515 reim 14516 crre 14521 crim 14522 remim 14524 mulre 14528 cjreb 14530 recj 14531 reneg 14532 readd 14533 remullem 14535 imcj 14539 imneg 14540 imadd 14541 cjadd 14548 cjneg 14554 imval2 14558 rei 14563 imi 14564 cji 14566 cjreim 14567 cjreim2 14568 rennim 14646 cnpart 14647 sqrtneglem 14674 sqrtneg 14675 sqrtm1 14683 absi 14694 absreimsq 14700 absreim 14701 absimle 14717 abs1m 14743 sqreulem 14767 sqreu 14768 bhmafibid1 14873 caucvgr 15080 sinf 15525 cosf 15526 tanval2 15534 tanval3 15535 resinval 15536 recosval 15537 efi4p 15538 resin4p 15539 recos4p 15540 resincl 15541 recoscl 15542 sinneg 15547 cosneg 15548 efival 15553 efmival 15554 sinhval 15555 coshval 15556 retanhcl 15560 tanhlt1 15561 tanhbnd 15562 efeul 15563 sinadd 15565 cosadd 15566 ef01bndlem 15585 sin01bnd 15586 cos01bnd 15587 absef 15598 absefib 15599 efieq1re 15600 demoivre 15601 demoivreALT 15602 nthruc 15653 igz 16325 4sqlem17 16352 cnsubrg 20226 cnrehmeo 23654 cmodscexp 23822 ncvspi 23857 cphipval2 23941 4cphipval2 23942 cphipval 23943 itg0 24479 itgz 24480 itgcl 24483 ibl0 24486 iblcnlem1 24487 itgcnlem 24489 itgneg 24503 iblss 24504 iblss2 24505 itgss 24511 itgeqa 24513 iblconst 24517 itgconst 24518 itgadd 24524 iblabs 24528 iblabsr 24529 iblmulc2 24530 itgmulc2 24533 itgsplit 24535 dvsincos 24680 iaa 25020 sincn 25138 coscn 25139 efhalfpi 25163 ef2kpi 25170 efper 25171 sinperlem 25172 efimpi 25183 pige3ALT 25211 sineq0 25215 efeq1 25219 tanregt0 25230 efif1olem4 25236 efifo 25238 eff1olem 25239 circgrp 25243 circsubm 25244 logneg 25278 logm1 25279 lognegb 25280 eflogeq 25292 efiarg 25297 cosargd 25298 logimul 25304 logneg2 25305 abslogle 25308 tanarg 25309 logcn 25337 logf1o2 25340 cxpsqrtlem 25392 cxpsqrt 25393 root1eq1 25443 cxpeq 25445 ang180lem1 25494 ang180lem2 25495 ang180lem3 25496 ang180lem4 25497 1cubrlem 25526 1cubr 25527 asinlem 25553 asinlem2 25554 asinlem3a 25555 asinlem3 25556 asinf 25557 atandm2 25562 atandm3 25563 atanf 25565 asinneg 25571 efiasin 25573 sinasin 25574 asinsinlem 25576 asinsin 25577 asin1 25579 asinbnd 25584 cosasin 25589 atanneg 25592 atancj 25595 efiatan 25597 atanlogaddlem 25598 atanlogadd 25599 atanlogsublem 25600 atanlogsub 25601 efiatan2 25602 2efiatan 25603 tanatan 25604 cosatan 25606 atantan 25608 atanbndlem 25610 atans2 25616 dvatan 25620 atantayl 25622 atantayl2 25623 log2cnv 25629 basellem3 25767 2sqlem2 26101 nvpi 28549 ipval2 28589 4ipval2 28590 ipval3 28591 ipidsq 28592 dipcl 28594 dipcj 28596 dip0r 28599 dipcn 28602 ip1ilem 28708 ipasslem10 28721 ipasslem11 28722 polid2i 29039 polidi 29040 lnopeq0lem1 29887 lnopeq0i 29889 lnophmlem2 29899 ccfldextdgrr 31263 cnre2csqima 31382 efmul2picn 32095 itgexpif 32105 vtscl 32137 vtsprod 32138 circlemeth 32139 logi 33215 iexpire 33216 itgaddnc 35397 iblabsnc 35401 iblmulc2nc 35402 itgmulc2nc 35405 ftc1anclem3 35412 ftc1anclem6 35415 ftc1anclem7 35416 ftc1anclem8 35417 ftc1anc 35418 dvasin 35421 areacirclem4 35428 cntotbnd 35514 sn-1ne2 39797 re1m1e0m0 39877 sn-addid2 39884 sn-it0e0 39894 sn-negex12 39895 reixi 39901 sn-1ticom 39913 sn-mulid2 39914 it1ei 39915 ipiiie0 39916 sn-0tie0 39918 sn-mul02 39919 sn-inelr 39932 itrere 39933 retire 39934 cnreeu 39935 proot1ex 40518 sqrtcval 40714 sqrtcval2 40715 resqrtvalex 40718 imsqrtvalex 40719 sineq0ALT 42016 iblsplit 42974 sqrtnegnre 44232 requad01 44506 sinh-conventional 45656 |
Copyright terms: Public domain | W3C validator |