MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-dc Structured version   Visualization version   GIF version

Axiom ax-dc 10441
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. Dependent choice is equivalent to the statement that every (nonempty) pruned tree has a branch. This axiom is redundant in ZFC; see axdc 10516. But ZF+DC is strictly weaker than ZF+AC, so this axiom provides for theorems that do not need the full power of AC. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
ax-dc ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Distinct variable group:   𝑓,𝑛,𝑥,𝑦,𝑧

Detailed syntax breakdown of Axiom ax-dc
StepHypRef Expression
1 vy . . . . . . 7 setvar 𝑦
21cv 1541 . . . . . 6 class 𝑦
3 vz . . . . . . 7 setvar 𝑧
43cv 1541 . . . . . 6 class 𝑧
5 vx . . . . . . 7 setvar 𝑥
65cv 1541 . . . . . 6 class 𝑥
72, 4, 6wbr 5149 . . . . 5 wff 𝑦𝑥𝑧
87, 3wex 1782 . . . 4 wff 𝑧 𝑦𝑥𝑧
98, 1wex 1782 . . 3 wff 𝑦𝑧 𝑦𝑥𝑧
106crn 5678 . . . 4 class ran 𝑥
116cdm 5677 . . . 4 class dom 𝑥
1210, 11wss 3949 . . 3 wff ran 𝑥 ⊆ dom 𝑥
139, 12wa 397 . 2 wff (∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)
14 vn . . . . . . 7 setvar 𝑛
1514cv 1541 . . . . . 6 class 𝑛
16 vf . . . . . . 7 setvar 𝑓
1716cv 1541 . . . . . 6 class 𝑓
1815, 17cfv 6544 . . . . 5 class (𝑓𝑛)
1915csuc 6367 . . . . . 6 class suc 𝑛
2019, 17cfv 6544 . . . . 5 class (𝑓‘suc 𝑛)
2118, 20, 6wbr 5149 . . . 4 wff (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
22 com 7855 . . . 4 class ω
2321, 14, 22wral 3062 . . 3 wff 𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
2423, 16wex 1782 . 2 wff 𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
2513, 24wi 4 1 wff ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Colors of variables: wff setvar class
This axiom is referenced by:  dcomex  10442  axdc2lem  10443
  Copyright terms: Public domain W3C validator