MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-dc Structured version   Visualization version   GIF version

Axiom ax-dc 10133
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. Dependent choice is equivalent to the statement that every (nonempty) pruned tree has a branch. This axiom is redundant in ZFC; see axdc 10208. But ZF+DC is strictly weaker than ZF+AC, so this axiom provides for theorems that do not need the full power of AC. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
ax-dc ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Distinct variable group:   𝑓,𝑛,𝑥,𝑦,𝑧

Detailed syntax breakdown of Axiom ax-dc
StepHypRef Expression
1 vy . . . . . . 7 setvar 𝑦
21cv 1538 . . . . . 6 class 𝑦
3 vz . . . . . . 7 setvar 𝑧
43cv 1538 . . . . . 6 class 𝑧
5 vx . . . . . . 7 setvar 𝑥
65cv 1538 . . . . . 6 class 𝑥
72, 4, 6wbr 5070 . . . . 5 wff 𝑦𝑥𝑧
87, 3wex 1783 . . . 4 wff 𝑧 𝑦𝑥𝑧
98, 1wex 1783 . . 3 wff 𝑦𝑧 𝑦𝑥𝑧
106crn 5581 . . . 4 class ran 𝑥
116cdm 5580 . . . 4 class dom 𝑥
1210, 11wss 3883 . . 3 wff ran 𝑥 ⊆ dom 𝑥
139, 12wa 395 . 2 wff (∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)
14 vn . . . . . . 7 setvar 𝑛
1514cv 1538 . . . . . 6 class 𝑛
16 vf . . . . . . 7 setvar 𝑓
1716cv 1538 . . . . . 6 class 𝑓
1815, 17cfv 6418 . . . . 5 class (𝑓𝑛)
1915csuc 6253 . . . . . 6 class suc 𝑛
2019, 17cfv 6418 . . . . 5 class (𝑓‘suc 𝑛)
2118, 20, 6wbr 5070 . . . 4 wff (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
22 com 7687 . . . 4 class ω
2321, 14, 22wral 3063 . . 3 wff 𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
2423, 16wex 1783 . 2 wff 𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
2513, 24wi 4 1 wff ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Colors of variables: wff setvar class
This axiom is referenced by:  dcomex  10134  axdc2lem  10135
  Copyright terms: Public domain W3C validator