MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-dc Structured version   Visualization version   GIF version

Axiom ax-dc 10334
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. Dependent choice is equivalent to the statement that every (nonempty) pruned tree has a branch. This axiom is redundant in ZFC; see axdc 10409. But ZF+DC is strictly weaker than ZF+AC, so this axiom provides for theorems that do not need the full power of AC. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
ax-dc ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Distinct variable group:   𝑓,𝑛,𝑥,𝑦,𝑧

Detailed syntax breakdown of Axiom ax-dc
StepHypRef Expression
1 vy . . . . . . 7 setvar 𝑦
21cv 1540 . . . . . 6 class 𝑦
3 vz . . . . . . 7 setvar 𝑧
43cv 1540 . . . . . 6 class 𝑧
5 vx . . . . . . 7 setvar 𝑥
65cv 1540 . . . . . 6 class 𝑥
72, 4, 6wbr 5091 . . . . 5 wff 𝑦𝑥𝑧
87, 3wex 1780 . . . 4 wff 𝑧 𝑦𝑥𝑧
98, 1wex 1780 . . 3 wff 𝑦𝑧 𝑦𝑥𝑧
106crn 5617 . . . 4 class ran 𝑥
116cdm 5616 . . . 4 class dom 𝑥
1210, 11wss 3902 . . 3 wff ran 𝑥 ⊆ dom 𝑥
139, 12wa 395 . 2 wff (∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)
14 vn . . . . . . 7 setvar 𝑛
1514cv 1540 . . . . . 6 class 𝑛
16 vf . . . . . . 7 setvar 𝑓
1716cv 1540 . . . . . 6 class 𝑓
1815, 17cfv 6481 . . . . 5 class (𝑓𝑛)
1915csuc 6308 . . . . . 6 class suc 𝑛
2019, 17cfv 6481 . . . . 5 class (𝑓‘suc 𝑛)
2118, 20, 6wbr 5091 . . . 4 wff (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
22 com 7796 . . . 4 class ω
2321, 14, 22wral 3047 . . 3 wff 𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
2423, 16wex 1780 . 2 wff 𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)
2513, 24wi 4 1 wff ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Colors of variables: wff setvar class
This axiom is referenced by:  dcomex  10335  axdc2lem  10336
  Copyright terms: Public domain W3C validator