Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-dc | Structured version Visualization version GIF version |
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. Dependent choice is equivalent to the statement that every (nonempty) pruned tree has a branch. This axiom is redundant in ZFC; see axdc 10208. But ZF+DC is strictly weaker than ZF+AC, so this axiom provides for theorems that do not need the full power of AC. (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
ax-dc | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vy | . . . . . . 7 setvar 𝑦 | |
2 | 1 | cv 1538 | . . . . . 6 class 𝑦 |
3 | vz | . . . . . . 7 setvar 𝑧 | |
4 | 3 | cv 1538 | . . . . . 6 class 𝑧 |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1538 | . . . . . 6 class 𝑥 |
7 | 2, 4, 6 | wbr 5070 | . . . . 5 wff 𝑦𝑥𝑧 |
8 | 7, 3 | wex 1783 | . . . 4 wff ∃𝑧 𝑦𝑥𝑧 |
9 | 8, 1 | wex 1783 | . . 3 wff ∃𝑦∃𝑧 𝑦𝑥𝑧 |
10 | 6 | crn 5581 | . . . 4 class ran 𝑥 |
11 | 6 | cdm 5580 | . . . 4 class dom 𝑥 |
12 | 10, 11 | wss 3883 | . . 3 wff ran 𝑥 ⊆ dom 𝑥 |
13 | 9, 12 | wa 395 | . 2 wff (∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) |
14 | vn | . . . . . . 7 setvar 𝑛 | |
15 | 14 | cv 1538 | . . . . . 6 class 𝑛 |
16 | vf | . . . . . . 7 setvar 𝑓 | |
17 | 16 | cv 1538 | . . . . . 6 class 𝑓 |
18 | 15, 17 | cfv 6418 | . . . . 5 class (𝑓‘𝑛) |
19 | 15 | csuc 6253 | . . . . . 6 class suc 𝑛 |
20 | 19, 17 | cfv 6418 | . . . . 5 class (𝑓‘suc 𝑛) |
21 | 18, 20, 6 | wbr 5070 | . . . 4 wff (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛) |
22 | com 7687 | . . . 4 class ω | |
23 | 21, 14, 22 | wral 3063 | . . 3 wff ∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛) |
24 | 23, 16 | wex 1783 | . 2 wff ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛) |
25 | 13, 24 | wi 4 | 1 wff ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Colors of variables: wff setvar class |
This axiom is referenced by: dcomex 10134 axdc2lem 10135 |
Copyright terms: Public domain | W3C validator |