| Step | Hyp | Ref
| Expression |
| 1 | | axdc2lem.2 |
. . . . . . . 8
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 2 | 1 | dmeqi 5915 |
. . . . . . 7
⊢ dom 𝑅 = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 3 | | 19.42v 1953 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))) |
| 4 | 3 | abbii 2809 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))} |
| 5 | | dmopab 5926 |
. . . . . . . 8
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 6 | | df-rab 3437 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))} |
| 7 | 4, 5, 6 | 3eqtr4i 2775 |
. . . . . . 7
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} |
| 8 | 2, 7 | eqtri 2765 |
. . . . . 6
⊢ dom 𝑅 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} |
| 9 | | ffvelcdm 7101 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
| 10 | | eldifsni 4790 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘𝑥) ≠ ∅) |
| 11 | | n0 4353 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 12 | 10, 11 | sylib 218 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 13 | 9, 12 | syl 17 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 14 | 13 | ralrimiva 3146 |
. . . . . . 7
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 15 | | rabid2 3470 |
. . . . . . 7
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 16 | 14, 15 | sylibr 234 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)}) |
| 17 | 8, 16 | eqtr4id 2796 |
. . . . 5
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → dom 𝑅 = 𝐴) |
| 18 | 17 | neeq1d 3000 |
. . . 4
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (dom 𝑅 ≠ ∅ ↔ 𝐴 ≠ ∅)) |
| 19 | 18 | biimparc 479 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → dom 𝑅 ≠ ∅) |
| 20 | | eldifi 4131 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘𝑥) ∈ 𝒫 𝐴) |
| 21 | | elelpwi 4610 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝒫 𝐴) → 𝑦 ∈ 𝐴) |
| 22 | 21 | expcom 413 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ 𝒫 𝐴 → (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ 𝐴)) |
| 23 | 9, 20, 22 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ 𝐴)) |
| 24 | 23 | expimpd 453 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 25 | 24 | exlimdv 1933 |
. . . . . . 7
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 26 | 25 | alrimiv 1927 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑦(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 27 | 1 | rneqi 5948 |
. . . . . . . . 9
⊢ ran 𝑅 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 28 | | rnopab 5965 |
. . . . . . . . 9
⊢ ran
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 29 | 27, 28 | eqtri 2765 |
. . . . . . . 8
⊢ ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 30 | 29 | sseq1i 4012 |
. . . . . . 7
⊢ (ran
𝑅 ⊆ 𝐴 ↔ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ 𝐴) |
| 31 | | abss 4063 |
. . . . . . 7
⊢ ({𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ 𝐴 ↔ ∀𝑦(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 32 | 30, 31 | bitri 275 |
. . . . . 6
⊢ (ran
𝑅 ⊆ 𝐴 ↔ ∀𝑦(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 33 | 26, 32 | sylibr 234 |
. . . . 5
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅 ⊆ 𝐴) |
| 34 | 33, 17 | sseqtrrd 4021 |
. . . 4
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅 ⊆ dom 𝑅) |
| 35 | 34 | adantl 481 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝑅 ⊆ dom 𝑅) |
| 36 | | fvrn0 6936 |
. . . . . . . . . 10
⊢ (𝐹‘𝑥) ∈ (ran 𝐹 ∪ {∅}) |
| 37 | | elssuni 4937 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑥) ⊆ ∪ (ran
𝐹 ∪
{∅})) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ⊆ ∪ (ran
𝐹 ∪
{∅}) |
| 39 | 38 | sseli 3979 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅})) |
| 40 | 39 | anim2i 617 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))) |
| 41 | 40 | ssopab2i 5555 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))} |
| 42 | | df-xp 5691 |
. . . . . 6
⊢ (𝐴 × ∪ (ran 𝐹 ∪ {∅})) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))} |
| 43 | 41, 1, 42 | 3sstr4i 4035 |
. . . . 5
⊢ 𝑅 ⊆ (𝐴 × ∪ (ran
𝐹 ∪
{∅})) |
| 44 | | axdc2lem.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
| 45 | | frn 6743 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝐹 ⊆ (𝒫 𝐴 ∖
{∅})) |
| 46 | 45 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ⊆ (𝒫 𝐴 ∖
{∅})) |
| 47 | 44 | pwex 5380 |
. . . . . . . . . . 11
⊢ 𝒫
𝐴 ∈ V |
| 48 | 47 | difexi 5330 |
. . . . . . . . . 10
⊢
(𝒫 𝐴 ∖
{∅}) ∈ V |
| 49 | 48 | ssex 5321 |
. . . . . . . . 9
⊢ (ran
𝐹 ⊆ (𝒫 𝐴 ∖ {∅}) → ran
𝐹 ∈
V) |
| 50 | 46, 49 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ∈ V) |
| 51 | | p0ex 5384 |
. . . . . . . 8
⊢ {∅}
∈ V |
| 52 | | unexg 7763 |
. . . . . . . 8
⊢ ((ran
𝐹 ∈ V ∧ {∅}
∈ V) → (ran 𝐹
∪ {∅}) ∈ V) |
| 53 | 50, 51, 52 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (ran 𝐹 ∪ {∅}) ∈
V) |
| 54 | 53 | uniexd 7762 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∪ (ran 𝐹 ∪ {∅}) ∈ V) |
| 55 | | xpexg 7770 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∪ (ran 𝐹 ∪ {∅}) ∈ V) → (𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈
V) |
| 56 | 44, 54, 55 | sylancr 587 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈
V) |
| 57 | | ssexg 5323 |
. . . . 5
⊢ ((𝑅 ⊆ (𝐴 × ∪ (ran
𝐹 ∪ {∅})) ∧
(𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈ V) → 𝑅 ∈ V) |
| 58 | 43, 56, 57 | sylancr 587 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝑅 ∈ V) |
| 59 | | n0 4353 |
. . . . . . . . 9
⊢ (dom
𝑟 ≠ ∅ ↔
∃𝑥 𝑥 ∈ dom 𝑟) |
| 60 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 61 | 60 | eldm 5911 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝑟 ↔ ∃𝑦 𝑥𝑟𝑦) |
| 62 | 61 | exbii 1848 |
. . . . . . . . 9
⊢
(∃𝑥 𝑥 ∈ dom 𝑟 ↔ ∃𝑥∃𝑦 𝑥𝑟𝑦) |
| 63 | 59, 62 | bitr2i 276 |
. . . . . . . 8
⊢
(∃𝑥∃𝑦 𝑥𝑟𝑦 ↔ dom 𝑟 ≠ ∅) |
| 64 | | dmeq 5914 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) |
| 65 | 64 | neeq1d 3000 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (dom 𝑟 ≠ ∅ ↔ dom 𝑅 ≠ ∅)) |
| 66 | 63, 65 | bitrid 283 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∃𝑥∃𝑦 𝑥𝑟𝑦 ↔ dom 𝑅 ≠ ∅)) |
| 67 | | rneq 5947 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) |
| 68 | 67, 64 | sseq12d 4017 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (ran 𝑟 ⊆ dom 𝑟 ↔ ran 𝑅 ⊆ dom 𝑅)) |
| 69 | 66, 68 | anbi12d 632 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) ↔ (dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅))) |
| 70 | | breq 5145 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 71 | 70 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 72 | 71 | exbidv 1921 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 73 | 69, 72 | imbi12d 344 |
. . . . 5
⊢ (𝑟 = 𝑅 → (((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘)) ↔ ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)))) |
| 74 | | ax-dc 10486 |
. . . . 5
⊢
((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘)) |
| 75 | 73, 74 | vtoclg 3554 |
. . . 4
⊢ (𝑅 ∈ V → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 76 | 58, 75 | syl 17 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 77 | 19, 35, 76 | mp2and 699 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) |
| 78 | | simpr 484 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) |
| 79 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (ℎ‘𝑘) = (ℎ‘𝑥)) |
| 80 | | suceq 6450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → suc 𝑘 = suc 𝑥) |
| 81 | 80 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (ℎ‘suc 𝑘) = (ℎ‘suc 𝑥)) |
| 82 | 79, 81 | breq12d 5156 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → ((ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ↔ (ℎ‘𝑥)𝑅(ℎ‘suc 𝑥))) |
| 83 | 82 | rspccv 3619 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝑥 ∈ ω → (ℎ‘𝑥)𝑅(ℎ‘suc 𝑥))) |
| 84 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢ (ℎ‘𝑥) ∈ V |
| 85 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢ (ℎ‘suc 𝑥) ∈ V |
| 86 | 84, 85 | breldm 5919 |
. . . . . . . . . . . . 13
⊢ ((ℎ‘𝑥)𝑅(ℎ‘suc 𝑥) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 87 | 83, 86 | syl6 35 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝑥 ∈ ω → (ℎ‘𝑥) ∈ dom 𝑅)) |
| 88 | 87 | imp 406 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 89 | 88 | adantll 714 |
. . . . . . . . . 10
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 90 | | eleq2 2830 |
. . . . . . . . . . 11
⊢ (dom
𝑅 = 𝐴 → ((ℎ‘𝑥) ∈ dom 𝑅 ↔ (ℎ‘𝑥) ∈ 𝐴)) |
| 91 | 90 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → ((ℎ‘𝑥) ∈ dom 𝑅 ↔ (ℎ‘𝑥) ∈ 𝐴)) |
| 92 | 89, 91 | mpbid 232 |
. . . . . . . . 9
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ 𝐴) |
| 93 | | axdc2lem.3 |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
| 94 | 92, 93 | fmptd 7134 |
. . . . . . . 8
⊢ ((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) → 𝐺:ω⟶𝐴) |
| 95 | 94 | ex 412 |
. . . . . . 7
⊢ (dom
𝑅 = 𝐴 → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → 𝐺:ω⟶𝐴)) |
| 96 | 17, 95 | syl 17 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → 𝐺:ω⟶𝐴)) |
| 97 | 96 | impcom 407 |
. . . . 5
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐺:ω⟶𝐴) |
| 98 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (ℎ‘𝑥) = (ℎ‘𝑘)) |
| 99 | | fvex 6919 |
. . . . . . . . . 10
⊢ (ℎ‘𝑘) ∈ V |
| 100 | 98, 93, 99 | fvmpt 7016 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → (𝐺‘𝑘) = (ℎ‘𝑘)) |
| 101 | | peano2 7912 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
| 102 | | fvex 6919 |
. . . . . . . . . 10
⊢ (ℎ‘suc 𝑘) ∈ V |
| 103 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (ℎ‘𝑥) = (ℎ‘suc 𝑘)) |
| 104 | 103, 93 | fvmptg 7014 |
. . . . . . . . . 10
⊢ ((suc
𝑘 ∈ ω ∧
(ℎ‘suc 𝑘) ∈ V) → (𝐺‘suc 𝑘) = (ℎ‘suc 𝑘)) |
| 105 | 101, 102,
104 | sylancl 586 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → (𝐺‘suc 𝑘) = (ℎ‘suc 𝑘)) |
| 106 | 100, 105 | breq12d 5156 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) ↔ (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 107 | | fvex 6919 |
. . . . . . . . . 10
⊢ (𝐺‘𝑘) ∈ V |
| 108 | | fvex 6919 |
. . . . . . . . . 10
⊢ (𝐺‘suc 𝑘) ∈ V |
| 109 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑘) → (𝑥 ∈ 𝐴 ↔ (𝐺‘𝑘) ∈ 𝐴)) |
| 110 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑘) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑘))) |
| 111 | 110 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑘) → (𝑦 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 112 | 109, 111 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐺‘𝑘) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘(𝐺‘𝑘))))) |
| 113 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘suc 𝑘) → (𝑦 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 114 | 113 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘suc 𝑘) → (((𝐺‘𝑘) ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘(𝐺‘𝑘))) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))))) |
| 115 | 107, 108,
112, 114, 1 | brab 5548 |
. . . . . . . . 9
⊢ ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 116 | 115 | simprbi 496 |
. . . . . . . 8
⊢ ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 117 | 106, 116 | biimtrrdi 254 |
. . . . . . 7
⊢ (𝑘 ∈ ω → ((ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 118 | 117 | ralimia 3080 |
. . . . . 6
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 119 | 118 | adantr 480 |
. . . . 5
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 120 | | fvrn0 6936 |
. . . . . . . . . 10
⊢ (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) |
| 121 | 120 | rgenw 3065 |
. . . . . . . . 9
⊢
∀𝑥 ∈
ω (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) |
| 122 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
| 123 | 122 | fmpt 7130 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ω (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) ↔ (𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅})) |
| 124 | 121, 123 | mpbi 230 |
. . . . . . . 8
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅}) |
| 125 | | dcomex 10487 |
. . . . . . . 8
⊢ ω
∈ V |
| 126 | | vex 3484 |
. . . . . . . . . 10
⊢ ℎ ∈ V |
| 127 | 126 | rnex 7932 |
. . . . . . . . 9
⊢ ran ℎ ∈ V |
| 128 | 127, 51 | unex 7764 |
. . . . . . . 8
⊢ (ran
ℎ ∪ {∅}) ∈
V |
| 129 | | fex2 7958 |
. . . . . . . 8
⊢ (((𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅}) ∧ ω ∈ V ∧
(ran ℎ ∪ {∅})
∈ V) → (𝑥 ∈
ω ↦ (ℎ‘𝑥)) ∈ V) |
| 130 | 124, 125,
128, 129 | mp3an 1463 |
. . . . . . 7
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)) ∈ V |
| 131 | 93, 130 | eqeltri 2837 |
. . . . . 6
⊢ 𝐺 ∈ V |
| 132 | | feq1 6716 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔:ω⟶𝐴 ↔ 𝐺:ω⟶𝐴)) |
| 133 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘suc 𝑘) = (𝐺‘suc 𝑘)) |
| 134 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑔‘𝑘) = (𝐺‘𝑘)) |
| 135 | 134 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝐹‘(𝑔‘𝑘)) = (𝐹‘(𝐺‘𝑘))) |
| 136 | 133, 135 | eleq12d 2835 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 137 | 136 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)) ↔ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 138 | 132, 137 | anbi12d 632 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))) ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))))) |
| 139 | 131, 138 | spcev 3606 |
. . . . 5
⊢ ((𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| 140 | 97, 119, 139 | syl2anc 584 |
. . . 4
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| 141 | 140 | ex 412 |
. . 3
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))))) |
| 142 | 141 | exlimiv 1930 |
. 2
⊢
(∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))))) |
| 143 | 77, 78, 142 | sylc 65 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |