| Step | Hyp | Ref
| Expression |
| 1 | | axdc2lem.2 |
. . . . . . . 8
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 2 | 1 | dmeqi 5851 |
. . . . . . 7
⊢ dom 𝑅 = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 3 | | 19.42v 1954 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))) |
| 4 | 3 | abbii 2800 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))} |
| 5 | | dmopab 5862 |
. . . . . . . 8
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 6 | | df-rab 3398 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))} |
| 7 | 4, 5, 6 | 3eqtr4i 2766 |
. . . . . . 7
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} |
| 8 | 2, 7 | eqtri 2756 |
. . . . . 6
⊢ dom 𝑅 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} |
| 9 | | ffvelcdm 7023 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
| 10 | | eldifsni 4743 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘𝑥) ≠ ∅) |
| 11 | | n0 4304 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 12 | 10, 11 | sylib 218 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 13 | 9, 12 | syl 17 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 14 | 13 | ralrimiva 3126 |
. . . . . . 7
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 15 | | rabid2 3430 |
. . . . . . 7
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 16 | 14, 15 | sylibr 234 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)}) |
| 17 | 8, 16 | eqtr4id 2787 |
. . . . 5
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → dom 𝑅 = 𝐴) |
| 18 | 17 | neeq1d 2989 |
. . . 4
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (dom 𝑅 ≠ ∅ ↔ 𝐴 ≠ ∅)) |
| 19 | 18 | biimparc 479 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → dom 𝑅 ≠ ∅) |
| 20 | 1 | rneqi 5884 |
. . . . . . 7
⊢ ran 𝑅 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 21 | | rnopab 5901 |
. . . . . . 7
⊢ ran
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 22 | 20, 21 | eqtri 2756 |
. . . . . 6
⊢ ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 23 | | eldifi 4082 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘𝑥) ∈ 𝒫 𝐴) |
| 24 | | elelpwi 4561 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝒫 𝐴) → 𝑦 ∈ 𝐴) |
| 25 | 24 | expcom 413 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ 𝒫 𝐴 → (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ 𝐴)) |
| 26 | 9, 23, 25 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ 𝐴)) |
| 27 | 26 | expimpd 453 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 28 | 27 | exlimdv 1934 |
. . . . . . 7
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 29 | 28 | abssdv 4017 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ 𝐴) |
| 30 | 22, 29 | eqsstrid 3970 |
. . . . 5
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅 ⊆ 𝐴) |
| 31 | 30, 17 | sseqtrrd 3969 |
. . . 4
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅 ⊆ dom 𝑅) |
| 32 | 31 | adantl 481 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝑅 ⊆ dom 𝑅) |
| 33 | | fvrn0 6859 |
. . . . . . . . . 10
⊢ (𝐹‘𝑥) ∈ (ran 𝐹 ∪ {∅}) |
| 34 | | elssuni 4891 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑥) ⊆ ∪ (ran
𝐹 ∪
{∅})) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ⊆ ∪ (ran
𝐹 ∪
{∅}) |
| 36 | 35 | sseli 3927 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅})) |
| 37 | 36 | anim2i 617 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))) |
| 38 | 37 | ssopab2i 5495 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))} |
| 39 | | df-xp 5627 |
. . . . . 6
⊢ (𝐴 × ∪ (ran 𝐹 ∪ {∅})) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))} |
| 40 | 38, 1, 39 | 3sstr4i 3983 |
. . . . 5
⊢ 𝑅 ⊆ (𝐴 × ∪ (ran
𝐹 ∪
{∅})) |
| 41 | | axdc2lem.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
| 42 | | frn 6666 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝐹 ⊆ (𝒫 𝐴 ∖
{∅})) |
| 43 | 42 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ⊆ (𝒫 𝐴 ∖
{∅})) |
| 44 | 41 | pwex 5322 |
. . . . . . . . . . 11
⊢ 𝒫
𝐴 ∈ V |
| 45 | 44 | difexi 5272 |
. . . . . . . . . 10
⊢
(𝒫 𝐴 ∖
{∅}) ∈ V |
| 46 | 45 | ssex 5263 |
. . . . . . . . 9
⊢ (ran
𝐹 ⊆ (𝒫 𝐴 ∖ {∅}) → ran
𝐹 ∈
V) |
| 47 | 43, 46 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ∈ V) |
| 48 | | p0ex 5326 |
. . . . . . . 8
⊢ {∅}
∈ V |
| 49 | | unexg 7685 |
. . . . . . . 8
⊢ ((ran
𝐹 ∈ V ∧ {∅}
∈ V) → (ran 𝐹
∪ {∅}) ∈ V) |
| 50 | 47, 48, 49 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (ran 𝐹 ∪ {∅}) ∈
V) |
| 51 | 50 | uniexd 7684 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∪ (ran 𝐹 ∪ {∅}) ∈ V) |
| 52 | | xpexg 7692 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∪ (ran 𝐹 ∪ {∅}) ∈ V) → (𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈
V) |
| 53 | 41, 51, 52 | sylancr 587 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈
V) |
| 54 | | ssexg 5265 |
. . . . 5
⊢ ((𝑅 ⊆ (𝐴 × ∪ (ran
𝐹 ∪ {∅})) ∧
(𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈ V) → 𝑅 ∈ V) |
| 55 | 40, 53, 54 | sylancr 587 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝑅 ∈ V) |
| 56 | | n0 4304 |
. . . . . . . . 9
⊢ (dom
𝑟 ≠ ∅ ↔
∃𝑥 𝑥 ∈ dom 𝑟) |
| 57 | | vex 3442 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 58 | 57 | eldm 5847 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝑟 ↔ ∃𝑦 𝑥𝑟𝑦) |
| 59 | 58 | exbii 1849 |
. . . . . . . . 9
⊢
(∃𝑥 𝑥 ∈ dom 𝑟 ↔ ∃𝑥∃𝑦 𝑥𝑟𝑦) |
| 60 | 56, 59 | bitr2i 276 |
. . . . . . . 8
⊢
(∃𝑥∃𝑦 𝑥𝑟𝑦 ↔ dom 𝑟 ≠ ∅) |
| 61 | | dmeq 5850 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) |
| 62 | 61 | neeq1d 2989 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (dom 𝑟 ≠ ∅ ↔ dom 𝑅 ≠ ∅)) |
| 63 | 60, 62 | bitrid 283 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∃𝑥∃𝑦 𝑥𝑟𝑦 ↔ dom 𝑅 ≠ ∅)) |
| 64 | | rneq 5883 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) |
| 65 | 64, 61 | sseq12d 3965 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (ran 𝑟 ⊆ dom 𝑟 ↔ ran 𝑅 ⊆ dom 𝑅)) |
| 66 | 63, 65 | anbi12d 632 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) ↔ (dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅))) |
| 67 | | breq 5097 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 68 | 67 | ralbidv 3157 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 69 | 68 | exbidv 1922 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 70 | 66, 69 | imbi12d 344 |
. . . . 5
⊢ (𝑟 = 𝑅 → (((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘)) ↔ ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)))) |
| 71 | | ax-dc 10347 |
. . . . 5
⊢
((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘)) |
| 72 | 70, 71 | vtoclg 3509 |
. . . 4
⊢ (𝑅 ∈ V → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 73 | 55, 72 | syl 17 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 74 | 19, 32, 73 | mp2and 699 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) |
| 75 | | simpr 484 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) |
| 76 | | fveq2 6831 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (ℎ‘𝑘) = (ℎ‘𝑥)) |
| 77 | | suceq 6382 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → suc 𝑘 = suc 𝑥) |
| 78 | 77 | fveq2d 6835 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (ℎ‘suc 𝑘) = (ℎ‘suc 𝑥)) |
| 79 | 76, 78 | breq12d 5108 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → ((ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ↔ (ℎ‘𝑥)𝑅(ℎ‘suc 𝑥))) |
| 80 | 79 | rspccv 3571 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝑥 ∈ ω → (ℎ‘𝑥)𝑅(ℎ‘suc 𝑥))) |
| 81 | | fvex 6844 |
. . . . . . . . . . . . . 14
⊢ (ℎ‘𝑥) ∈ V |
| 82 | | fvex 6844 |
. . . . . . . . . . . . . 14
⊢ (ℎ‘suc 𝑥) ∈ V |
| 83 | 81, 82 | breldm 5855 |
. . . . . . . . . . . . 13
⊢ ((ℎ‘𝑥)𝑅(ℎ‘suc 𝑥) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 84 | 80, 83 | syl6 35 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝑥 ∈ ω → (ℎ‘𝑥) ∈ dom 𝑅)) |
| 85 | 84 | imp 406 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 86 | 85 | adantll 714 |
. . . . . . . . . 10
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 87 | | eleq2 2822 |
. . . . . . . . . . 11
⊢ (dom
𝑅 = 𝐴 → ((ℎ‘𝑥) ∈ dom 𝑅 ↔ (ℎ‘𝑥) ∈ 𝐴)) |
| 88 | 87 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → ((ℎ‘𝑥) ∈ dom 𝑅 ↔ (ℎ‘𝑥) ∈ 𝐴)) |
| 89 | 86, 88 | mpbid 232 |
. . . . . . . . 9
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ 𝐴) |
| 90 | | axdc2lem.3 |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
| 91 | 89, 90 | fmptd 7056 |
. . . . . . . 8
⊢ ((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) → 𝐺:ω⟶𝐴) |
| 92 | 91 | ex 412 |
. . . . . . 7
⊢ (dom
𝑅 = 𝐴 → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → 𝐺:ω⟶𝐴)) |
| 93 | 17, 92 | syl 17 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → 𝐺:ω⟶𝐴)) |
| 94 | 93 | impcom 407 |
. . . . 5
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐺:ω⟶𝐴) |
| 95 | | fveq2 6831 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (ℎ‘𝑥) = (ℎ‘𝑘)) |
| 96 | | fvex 6844 |
. . . . . . . . . 10
⊢ (ℎ‘𝑘) ∈ V |
| 97 | 95, 90, 96 | fvmpt 6938 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → (𝐺‘𝑘) = (ℎ‘𝑘)) |
| 98 | | peano2 7829 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
| 99 | | fvex 6844 |
. . . . . . . . . 10
⊢ (ℎ‘suc 𝑘) ∈ V |
| 100 | | fveq2 6831 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (ℎ‘𝑥) = (ℎ‘suc 𝑘)) |
| 101 | 100, 90 | fvmptg 6936 |
. . . . . . . . . 10
⊢ ((suc
𝑘 ∈ ω ∧
(ℎ‘suc 𝑘) ∈ V) → (𝐺‘suc 𝑘) = (ℎ‘suc 𝑘)) |
| 102 | 98, 99, 101 | sylancl 586 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → (𝐺‘suc 𝑘) = (ℎ‘suc 𝑘)) |
| 103 | 97, 102 | breq12d 5108 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) ↔ (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 104 | | fvex 6844 |
. . . . . . . . . 10
⊢ (𝐺‘𝑘) ∈ V |
| 105 | | fvex 6844 |
. . . . . . . . . 10
⊢ (𝐺‘suc 𝑘) ∈ V |
| 106 | | eleq1 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑘) → (𝑥 ∈ 𝐴 ↔ (𝐺‘𝑘) ∈ 𝐴)) |
| 107 | | fveq2 6831 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑘) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑘))) |
| 108 | 107 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑘) → (𝑦 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 109 | 106, 108 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐺‘𝑘) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘(𝐺‘𝑘))))) |
| 110 | | eleq1 2821 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘suc 𝑘) → (𝑦 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 111 | 110 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘suc 𝑘) → (((𝐺‘𝑘) ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘(𝐺‘𝑘))) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))))) |
| 112 | 104, 105,
109, 111, 1 | brab 5488 |
. . . . . . . . 9
⊢ ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 113 | 112 | simprbi 496 |
. . . . . . . 8
⊢ ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 114 | 103, 113 | biimtrrdi 254 |
. . . . . . 7
⊢ (𝑘 ∈ ω → ((ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 115 | 114 | ralimia 3068 |
. . . . . 6
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 116 | 115 | adantr 480 |
. . . . 5
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 117 | | fvrn0 6859 |
. . . . . . . . . 10
⊢ (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) |
| 118 | 117 | rgenw 3053 |
. . . . . . . . 9
⊢
∀𝑥 ∈
ω (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) |
| 119 | | eqid 2733 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
| 120 | 119 | fmpt 7052 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ω (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) ↔ (𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅})) |
| 121 | 118, 120 | mpbi 230 |
. . . . . . . 8
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅}) |
| 122 | | dcomex 10348 |
. . . . . . . 8
⊢ ω
∈ V |
| 123 | | vex 3442 |
. . . . . . . . . 10
⊢ ℎ ∈ V |
| 124 | 123 | rnex 7849 |
. . . . . . . . 9
⊢ ran ℎ ∈ V |
| 125 | 124, 48 | unex 7686 |
. . . . . . . 8
⊢ (ran
ℎ ∪ {∅}) ∈
V |
| 126 | | fex2 7875 |
. . . . . . . 8
⊢ (((𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅}) ∧ ω ∈ V ∧
(ran ℎ ∪ {∅})
∈ V) → (𝑥 ∈
ω ↦ (ℎ‘𝑥)) ∈ V) |
| 127 | 121, 122,
125, 126 | mp3an 1463 |
. . . . . . 7
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)) ∈ V |
| 128 | 90, 127 | eqeltri 2829 |
. . . . . 6
⊢ 𝐺 ∈ V |
| 129 | | feq1 6637 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔:ω⟶𝐴 ↔ 𝐺:ω⟶𝐴)) |
| 130 | | fveq1 6830 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘suc 𝑘) = (𝐺‘suc 𝑘)) |
| 131 | | fveq1 6830 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑔‘𝑘) = (𝐺‘𝑘)) |
| 132 | 131 | fveq2d 6835 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝐹‘(𝑔‘𝑘)) = (𝐹‘(𝐺‘𝑘))) |
| 133 | 130, 132 | eleq12d 2827 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 134 | 133 | ralbidv 3157 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)) ↔ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 135 | 129, 134 | anbi12d 632 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))) ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))))) |
| 136 | 128, 135 | spcev 3558 |
. . . . 5
⊢ ((𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| 137 | 94, 116, 136 | syl2anc 584 |
. . . 4
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| 138 | 137 | ex 412 |
. . 3
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))))) |
| 139 | 138 | exlimiv 1931 |
. 2
⊢
(∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))))) |
| 140 | 74, 75, 139 | sylc 65 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |