MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc2lem Structured version   Visualization version   GIF version

Theorem axdc2lem 9716
Description: Lemma for axdc2 9717. We construct a relation 𝑅 based on 𝐹 such that 𝑥𝑅𝑦 iff 𝑦 ∈ (𝐹𝑥), and show that the "function" described by ax-dc 9714 can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
axdc2lem.1 𝐴 ∈ V
axdc2lem.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
axdc2lem.3 𝐺 = (𝑥 ∈ ω ↦ (𝑥))
Assertion
Ref Expression
axdc2lem ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,   𝑥,𝐴,𝑦,   𝑔,𝐹,   𝑥,𝐹,𝑦   𝑔,𝐺,𝑘   𝑥,𝐺,𝑦,𝑘   𝑅,,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑘)   𝑅(𝑦,𝑔)   𝐹(𝑘)   𝐺()

Proof of Theorem axdc2lem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6714 . . . . . . . . 9 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
2 eldifsni 4629 . . . . . . . . . 10 ((𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹𝑥) ≠ ∅)
3 n0 4230 . . . . . . . . . 10 ((𝐹𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑥))
42, 3sylib 219 . . . . . . . . 9 ((𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 𝑦 ∈ (𝐹𝑥))
51, 4syl 17 . . . . . . . 8 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝐴) → ∃𝑦 𝑦 ∈ (𝐹𝑥))
65ralrimiva 3149 . . . . . . 7 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑥𝐴𝑦 𝑦 ∈ (𝐹𝑥))
7 rabid2 3340 . . . . . . 7 (𝐴 = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} ↔ ∀𝑥𝐴𝑦 𝑦 ∈ (𝐹𝑥))
86, 7sylibr 235 . . . . . 6 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → 𝐴 = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
9 axdc2lem.2 . . . . . . . 8 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
109dmeqi 5659 . . . . . . 7 dom 𝑅 = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
11 19.42v 1931 . . . . . . . . 9 (∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥)))
1211abbii 2861 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
13 dmopab 5670 . . . . . . . 8 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
14 df-rab 3114 . . . . . . . 8 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
1512, 13, 143eqtr4i 2829 . . . . . . 7 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)}
1610, 15eqtri 2819 . . . . . 6 dom 𝑅 = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)}
178, 16syl6reqr 2850 . . . . 5 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → dom 𝑅 = 𝐴)
1817neeq1d 3043 . . . 4 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (dom 𝑅 ≠ ∅ ↔ 𝐴 ≠ ∅))
1918biimparc 480 . . 3 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → dom 𝑅 ≠ ∅)
20 eldifi 4024 . . . . . . . . . 10 ((𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹𝑥) ∈ 𝒫 𝐴)
21 elelpwi 4466 . . . . . . . . . . 11 ((𝑦 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝒫 𝐴) → 𝑦𝐴)
2221expcom 414 . . . . . . . . . 10 ((𝐹𝑥) ∈ 𝒫 𝐴 → (𝑦 ∈ (𝐹𝑥) → 𝑦𝐴))
231, 20, 223syl 18 . . . . . . . . 9 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝐴) → (𝑦 ∈ (𝐹𝑥) → 𝑦𝐴))
2423expimpd 454 . . . . . . . 8 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) → 𝑦𝐴))
2524exlimdv 1911 . . . . . . 7 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) → 𝑦𝐴))
2625alrimiv 1905 . . . . . 6 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑦(∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) → 𝑦𝐴))
279rneqi 5689 . . . . . . . . 9 ran 𝑅 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
28 rnopab 5708 . . . . . . . . 9 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
2927, 28eqtri 2819 . . . . . . . 8 ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
3029sseq1i 3916 . . . . . . 7 (ran 𝑅𝐴 ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ⊆ 𝐴)
31 abss 3961 . . . . . . 7 ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ⊆ 𝐴 ↔ ∀𝑦(∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) → 𝑦𝐴))
3230, 31bitri 276 . . . . . 6 (ran 𝑅𝐴 ↔ ∀𝑦(∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) → 𝑦𝐴))
3326, 32sylibr 235 . . . . 5 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅𝐴)
3433, 17sseqtr4d 3929 . . . 4 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅 ⊆ dom 𝑅)
3534adantl 482 . . 3 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝑅 ⊆ dom 𝑅)
36 fvrn0 6566 . . . . . . . . . 10 (𝐹𝑥) ∈ (ran 𝐹 ∪ {∅})
37 elssuni 4774 . . . . . . . . . 10 ((𝐹𝑥) ∈ (ran 𝐹 ∪ {∅}) → (𝐹𝑥) ⊆ (ran 𝐹 ∪ {∅}))
3836, 37ax-mp 5 . . . . . . . . 9 (𝐹𝑥) ⊆ (ran 𝐹 ∪ {∅})
3938sseli 3885 . . . . . . . 8 (𝑦 ∈ (𝐹𝑥) → 𝑦 (ran 𝐹 ∪ {∅}))
4039anim2i 616 . . . . . . 7 ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) → (𝑥𝐴𝑦 (ran 𝐹 ∪ {∅})))
4140ssopab2i 5325 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 (ran 𝐹 ∪ {∅}))}
42 df-xp 5449 . . . . . 6 (𝐴 × (ran 𝐹 ∪ {∅})) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 (ran 𝐹 ∪ {∅}))}
4341, 9, 423sstr4i 3931 . . . . 5 𝑅 ⊆ (𝐴 × (ran 𝐹 ∪ {∅}))
44 axdc2lem.1 . . . . . 6 𝐴 ∈ V
45 frn 6388 . . . . . . . . . 10 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝐹 ⊆ (𝒫 𝐴 ∖ {∅}))
4645adantl 482 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ⊆ (𝒫 𝐴 ∖ {∅}))
4744pwex 5172 . . . . . . . . . . 11 𝒫 𝐴 ∈ V
4847difexi 5123 . . . . . . . . . 10 (𝒫 𝐴 ∖ {∅}) ∈ V
4948ssex 5116 . . . . . . . . 9 (ran 𝐹 ⊆ (𝒫 𝐴 ∖ {∅}) → ran 𝐹 ∈ V)
5046, 49syl 17 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ∈ V)
51 p0ex 5175 . . . . . . . 8 {∅} ∈ V
52 unexg 7329 . . . . . . . 8 ((ran 𝐹 ∈ V ∧ {∅} ∈ V) → (ran 𝐹 ∪ {∅}) ∈ V)
5350, 51, 52sylancl 586 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (ran 𝐹 ∪ {∅}) ∈ V)
54 uniexg 7325 . . . . . . 7 ((ran 𝐹 ∪ {∅}) ∈ V → (ran 𝐹 ∪ {∅}) ∈ V)
5553, 54syl 17 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (ran 𝐹 ∪ {∅}) ∈ V)
56 xpexg 7330 . . . . . 6 ((𝐴 ∈ V ∧ (ran 𝐹 ∪ {∅}) ∈ V) → (𝐴 × (ran 𝐹 ∪ {∅})) ∈ V)
5744, 55, 56sylancr 587 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (𝐴 × (ran 𝐹 ∪ {∅})) ∈ V)
58 ssexg 5118 . . . . 5 ((𝑅 ⊆ (𝐴 × (ran 𝐹 ∪ {∅})) ∧ (𝐴 × (ran 𝐹 ∪ {∅})) ∈ V) → 𝑅 ∈ V)
5943, 57, 58sylancr 587 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝑅 ∈ V)
60 n0 4230 . . . . . . . . 9 (dom 𝑟 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom 𝑟)
61 vex 3440 . . . . . . . . . . 11 𝑥 ∈ V
6261eldm 5655 . . . . . . . . . 10 (𝑥 ∈ dom 𝑟 ↔ ∃𝑦 𝑥𝑟𝑦)
6362exbii 1829 . . . . . . . . 9 (∃𝑥 𝑥 ∈ dom 𝑟 ↔ ∃𝑥𝑦 𝑥𝑟𝑦)
6460, 63bitr2i 277 . . . . . . . 8 (∃𝑥𝑦 𝑥𝑟𝑦 ↔ dom 𝑟 ≠ ∅)
65 dmeq 5658 . . . . . . . . 9 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
6665neeq1d 3043 . . . . . . . 8 (𝑟 = 𝑅 → (dom 𝑟 ≠ ∅ ↔ dom 𝑅 ≠ ∅))
6764, 66syl5bb 284 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑥𝑦 𝑥𝑟𝑦 ↔ dom 𝑅 ≠ ∅))
68 rneq 5688 . . . . . . . 8 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
6968, 65sseq12d 3921 . . . . . . 7 (𝑟 = 𝑅 → (ran 𝑟 ⊆ dom 𝑟 ↔ ran 𝑅 ⊆ dom 𝑅))
7067, 69anbi12d 630 . . . . . 6 (𝑟 = 𝑅 → ((∃𝑥𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) ↔ (dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅)))
71 breq 4964 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑘)𝑟(‘suc 𝑘) ↔ (𝑘)𝑅(‘suc 𝑘)))
7271ralbidv 3164 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑘 ∈ ω (𝑘)𝑟(‘suc 𝑘) ↔ ∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)))
7372exbidv 1899 . . . . . 6 (𝑟 = 𝑅 → (∃𝑘 ∈ ω (𝑘)𝑟(‘suc 𝑘) ↔ ∃𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)))
7470, 73imbi12d 346 . . . . 5 (𝑟 = 𝑅 → (((∃𝑥𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃𝑘 ∈ ω (𝑘)𝑟(‘suc 𝑘)) ↔ ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘))))
75 ax-dc 9714 . . . . 5 ((∃𝑥𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃𝑘 ∈ ω (𝑘)𝑟(‘suc 𝑘))
7674, 75vtoclg 3510 . . . 4 (𝑅 ∈ V → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)))
7759, 76syl 17 . . 3 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)))
7819, 35, 77mp2and 695 . 2 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘))
79 simpr 485 . 2 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}))
80 fveq2 6538 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑘) = (𝑥))
81 suceq 6131 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑥 → suc 𝑘 = suc 𝑥)
8281fveq2d 6542 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (‘suc 𝑘) = (‘suc 𝑥))
8380, 82breq12d 4975 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → ((𝑘)𝑅(‘suc 𝑘) ↔ (𝑥)𝑅(‘suc 𝑥)))
8483rspccv 3556 . . . . . . . . . . . . 13 (∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) → (𝑥 ∈ ω → (𝑥)𝑅(‘suc 𝑥)))
85 fvex 6551 . . . . . . . . . . . . . 14 (𝑥) ∈ V
86 fvex 6551 . . . . . . . . . . . . . 14 (‘suc 𝑥) ∈ V
8785, 86breldm 5663 . . . . . . . . . . . . 13 ((𝑥)𝑅(‘suc 𝑥) → (𝑥) ∈ dom 𝑅)
8884, 87syl6 35 . . . . . . . . . . . 12 (∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) → (𝑥 ∈ ω → (𝑥) ∈ dom 𝑅))
8988imp 407 . . . . . . . . . . 11 ((∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) ∧ 𝑥 ∈ ω) → (𝑥) ∈ dom 𝑅)
9089adantll 710 . . . . . . . . . 10 (((dom 𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (𝑥) ∈ dom 𝑅)
91 eleq2 2871 . . . . . . . . . . 11 (dom 𝑅 = 𝐴 → ((𝑥) ∈ dom 𝑅 ↔ (𝑥) ∈ 𝐴))
9291ad2antrr 722 . . . . . . . . . 10 (((dom 𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)) ∧ 𝑥 ∈ ω) → ((𝑥) ∈ dom 𝑅 ↔ (𝑥) ∈ 𝐴))
9390, 92mpbid 233 . . . . . . . . 9 (((dom 𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (𝑥) ∈ 𝐴)
94 axdc2lem.3 . . . . . . . . 9 𝐺 = (𝑥 ∈ ω ↦ (𝑥))
9593, 94fmptd 6741 . . . . . . . 8 ((dom 𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘)) → 𝐺:ω⟶𝐴)
9695ex 413 . . . . . . 7 (dom 𝑅 = 𝐴 → (∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) → 𝐺:ω⟶𝐴))
9717, 96syl 17 . . . . . 6 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) → 𝐺:ω⟶𝐴))
9897impcom 408 . . . . 5 ((∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐺:ω⟶𝐴)
99 fveq2 6538 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝑥) = (𝑘))
100 fvex 6551 . . . . . . . . . 10 (𝑘) ∈ V
10199, 94, 100fvmpt 6635 . . . . . . . . 9 (𝑘 ∈ ω → (𝐺𝑘) = (𝑘))
102 peano2 7458 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
103 fvex 6551 . . . . . . . . . 10 (‘suc 𝑘) ∈ V
104 fveq2 6538 . . . . . . . . . . 11 (𝑥 = suc 𝑘 → (𝑥) = (‘suc 𝑘))
105104, 94fvmptg 6633 . . . . . . . . . 10 ((suc 𝑘 ∈ ω ∧ (‘suc 𝑘) ∈ V) → (𝐺‘suc 𝑘) = (‘suc 𝑘))
106102, 103, 105sylancl 586 . . . . . . . . 9 (𝑘 ∈ ω → (𝐺‘suc 𝑘) = (‘suc 𝑘))
107101, 106breq12d 4975 . . . . . . . 8 (𝑘 ∈ ω → ((𝐺𝑘)𝑅(𝐺‘suc 𝑘) ↔ (𝑘)𝑅(‘suc 𝑘)))
108 fvex 6551 . . . . . . . . . 10 (𝐺𝑘) ∈ V
109 fvex 6551 . . . . . . . . . 10 (𝐺‘suc 𝑘) ∈ V
110 eleq1 2870 . . . . . . . . . . 11 (𝑥 = (𝐺𝑘) → (𝑥𝐴 ↔ (𝐺𝑘) ∈ 𝐴))
111 fveq2 6538 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑘) → (𝐹𝑥) = (𝐹‘(𝐺𝑘)))
112111eleq2d 2868 . . . . . . . . . . 11 (𝑥 = (𝐺𝑘) → (𝑦 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹‘(𝐺𝑘))))
113110, 112anbi12d 630 . . . . . . . . . 10 (𝑥 = (𝐺𝑘) → ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ ((𝐺𝑘) ∈ 𝐴𝑦 ∈ (𝐹‘(𝐺𝑘)))))
114 eleq1 2870 . . . . . . . . . . 11 (𝑦 = (𝐺‘suc 𝑘) → (𝑦 ∈ (𝐹‘(𝐺𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘))))
115114anbi2d 628 . . . . . . . . . 10 (𝑦 = (𝐺‘suc 𝑘) → (((𝐺𝑘) ∈ 𝐴𝑦 ∈ (𝐹‘(𝐺𝑘))) ↔ ((𝐺𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘)))))
116108, 109, 113, 115, 9brab 5320 . . . . . . . . 9 ((𝐺𝑘)𝑅(𝐺‘suc 𝑘) ↔ ((𝐺𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘))))
117116simprbi 497 . . . . . . . 8 ((𝐺𝑘)𝑅(𝐺‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘)))
118107, 117syl6bir 255 . . . . . . 7 (𝑘 ∈ ω → ((𝑘)𝑅(‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘))))
119118ralimia 3125 . . . . . 6 (∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘)))
120119adantr 481 . . . . 5 ((∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘)))
121 fvrn0 6566 . . . . . . . . . 10 (𝑥) ∈ (ran ∪ {∅})
122121rgenw 3117 . . . . . . . . 9 𝑥 ∈ ω (𝑥) ∈ (ran ∪ {∅})
123 eqid 2795 . . . . . . . . . 10 (𝑥 ∈ ω ↦ (𝑥)) = (𝑥 ∈ ω ↦ (𝑥))
124123fmpt 6737 . . . . . . . . 9 (∀𝑥 ∈ ω (𝑥) ∈ (ran ∪ {∅}) ↔ (𝑥 ∈ ω ↦ (𝑥)):ω⟶(ran ∪ {∅}))
125122, 124mpbi 231 . . . . . . . 8 (𝑥 ∈ ω ↦ (𝑥)):ω⟶(ran ∪ {∅})
126 dcomex 9715 . . . . . . . 8 ω ∈ V
127 vex 3440 . . . . . . . . . 10 ∈ V
128127rnex 7473 . . . . . . . . 9 ran ∈ V
129128, 51unex 7326 . . . . . . . 8 (ran ∪ {∅}) ∈ V
130 fex2 7494 . . . . . . . 8 (((𝑥 ∈ ω ↦ (𝑥)):ω⟶(ran ∪ {∅}) ∧ ω ∈ V ∧ (ran ∪ {∅}) ∈ V) → (𝑥 ∈ ω ↦ (𝑥)) ∈ V)
131125, 126, 129, 130mp3an 1453 . . . . . . 7 (𝑥 ∈ ω ↦ (𝑥)) ∈ V
13294, 131eqeltri 2879 . . . . . 6 𝐺 ∈ V
133 feq1 6363 . . . . . . 7 (𝑔 = 𝐺 → (𝑔:ω⟶𝐴𝐺:ω⟶𝐴))
134 fveq1 6537 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑔‘suc 𝑘) = (𝐺‘suc 𝑘))
135 fveq1 6537 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑔𝑘) = (𝐺𝑘))
136135fveq2d 6542 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐹‘(𝑔𝑘)) = (𝐹‘(𝐺𝑘)))
137134, 136eleq12d 2877 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘))))
138137ralbidv 3164 . . . . . . 7 (𝑔 = 𝐺 → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘))))
139133, 138anbi12d 630 . . . . . 6 (𝑔 = 𝐺 → ((𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))) ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘)))))
140132, 139spcev 3549 . . . . 5 ((𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
14198, 120, 140syl2anc 584 . . . 4 ((∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
142141ex 413 . . 3 (∀𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)))))
143142exlimiv 1908 . 2 (∃𝑘 ∈ ω (𝑘)𝑅(‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)))))
14478, 79, 143sylc 65 1 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1520   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wne 2984  wral 3105  {crab 3109  Vcvv 3437  cdif 3856  cun 3857  wss 3859  c0 4211  𝒫 cpw 4453  {csn 4472   cuni 4745   class class class wbr 4962  {copab 5024  cmpt 5041   × cxp 5441  dom cdm 5443  ran crn 5444  suc csuc 6068  wf 6221  cfv 6225  ωcom 7436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-dc 9714
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-fv 6233  df-om 7437  df-1o 7953
This theorem is referenced by:  axdc2  9717
  Copyright terms: Public domain W3C validator