| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dominf | Structured version Visualization version GIF version | ||
| Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc 10336. See dominfac 10474 for a version proved from ax-ac 10360. The axiom of Regularity is used for this proof, via inf3lem6 9533, and its use is necessary: otherwise the set 𝐴 = {𝐴} or 𝐴 = {∅, 𝐴} (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| dominf.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dominf | ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dominf.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | neeq1 2992 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | unieq 4871 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 5 | 3, 4 | sseq12d 3965 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ 𝑥 ↔ 𝐴 ⊆ ∪ 𝐴)) |
| 6 | 2, 5 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴))) |
| 7 | breq2 5099 | . . 3 ⊢ (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴)) | |
| 8 | 6, 7 | imbi12d 344 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴))) |
| 9 | eqid 2733 | . . . 4 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 10 | eqid 2733 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
| 11 | 9, 10, 1, 1 | inf3lem6 9533 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥) |
| 12 | vpwex 5319 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
| 13 | 12 | f1dom 8905 | . . 3 ⊢ ((rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥) |
| 14 | pwfi 9213 | . . . . . . 7 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
| 15 | 14 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
| 16 | isfinite 9552 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝑥 ≺ ω) | |
| 17 | isfinite 9552 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω) | |
| 18 | 15, 16, 17 | 3imtr3i 291 | . . . . 5 ⊢ (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω) |
| 19 | 18 | con3i 154 | . . . 4 ⊢ (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω) |
| 20 | 12 | domtriom 10344 | . . . 4 ⊢ (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω) |
| 21 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 22 | 21 | domtriom 10344 | . . . 4 ⊢ (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω) |
| 23 | 19, 20, 22 | 3imtr4i 292 | . . 3 ⊢ (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥) |
| 24 | 11, 13, 23 | 3syl 18 | . 2 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) |
| 25 | 1, 8, 24 | vtocl 3513 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 {crab 3397 Vcvv 3438 ∩ cin 3898 ⊆ wss 3899 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4860 class class class wbr 5095 ↦ cmpt 5176 ↾ cres 5623 –1-1→wf1 6486 ωcom 7805 reccrdg 8337 ≼ cdom 8876 ≺ csdm 8877 Fincfn 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9488 ax-inf2 9541 ax-cc 10336 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-dju 9804 df-card 9842 |
| This theorem is referenced by: axgroth3 10732 |
| Copyright terms: Public domain | W3C validator |