| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dominf | Structured version Visualization version GIF version | ||
| Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc 10388. See dominfac 10526 for a version proved from ax-ac 10412. The axiom of Regularity is used for this proof, via inf3lem6 9586, and its use is necessary: otherwise the set 𝐴 = {𝐴} or 𝐴 = {∅, 𝐴} (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| dominf.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dominf | ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dominf.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | neeq1 2987 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | unieq 4882 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 5 | 3, 4 | sseq12d 3980 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ 𝑥 ↔ 𝐴 ⊆ ∪ 𝐴)) |
| 6 | 2, 5 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴))) |
| 7 | breq2 5111 | . . 3 ⊢ (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴)) | |
| 8 | 6, 7 | imbi12d 344 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴))) |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 10 | eqid 2729 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
| 11 | 9, 10, 1, 1 | inf3lem6 9586 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥) |
| 12 | vpwex 5332 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
| 13 | 12 | f1dom 8945 | . . 3 ⊢ ((rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥) |
| 14 | pwfi 9268 | . . . . . . 7 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
| 15 | 14 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
| 16 | isfinite 9605 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝑥 ≺ ω) | |
| 17 | isfinite 9605 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω) | |
| 18 | 15, 16, 17 | 3imtr3i 291 | . . . . 5 ⊢ (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω) |
| 19 | 18 | con3i 154 | . . . 4 ⊢ (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω) |
| 20 | 12 | domtriom 10396 | . . . 4 ⊢ (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω) |
| 21 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 22 | 21 | domtriom 10396 | . . . 4 ⊢ (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω) |
| 23 | 19, 20, 22 | 3imtr4i 292 | . . 3 ⊢ (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥) |
| 24 | 11, 13, 23 | 3syl 18 | . 2 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) |
| 25 | 1, 8, 24 | vtocl 3524 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 ↾ cres 5640 –1-1→wf1 6508 ωcom 7842 reccrdg 8377 ≼ cdom 8916 ≺ csdm 8917 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-cc 10388 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 |
| This theorem is referenced by: axgroth3 10784 |
| Copyright terms: Public domain | W3C validator |