![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dominf | Structured version Visualization version GIF version |
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc 9655. See dominfac 9793 for a version proved from ax-ac 9679. The axiom of Regularity is used for this proof, via inf3lem6 8890, and its use is necessary: otherwise the set 𝐴 = {𝐴} or 𝐴 = {∅, 𝐴} (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
dominf.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
dominf | ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dominf.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | neeq1 3029 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | unieq 4720 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
5 | 3, 4 | sseq12d 3890 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ 𝑥 ↔ 𝐴 ⊆ ∪ 𝐴)) |
6 | 2, 5 | anbi12d 621 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴))) |
7 | breq2 4933 | . . 3 ⊢ (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴)) | |
8 | 6, 7 | imbi12d 337 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴))) |
9 | eqid 2778 | . . . 4 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
10 | eqid 2778 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
11 | 9, 10, 1, 1 | inf3lem6 8890 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥) |
12 | vpwex 5131 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
13 | 12 | f1dom 8328 | . . 3 ⊢ ((rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥) |
14 | pwfi 8614 | . . . . . . 7 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
15 | 14 | biimpi 208 | . . . . . 6 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
16 | isfinite 8909 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝑥 ≺ ω) | |
17 | isfinite 8909 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω) | |
18 | 15, 16, 17 | 3imtr3i 283 | . . . . 5 ⊢ (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω) |
19 | 18 | con3i 152 | . . . 4 ⊢ (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω) |
20 | 12 | domtriom 9663 | . . . 4 ⊢ (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω) |
21 | vex 3418 | . . . . 5 ⊢ 𝑥 ∈ V | |
22 | 21 | domtriom 9663 | . . . 4 ⊢ (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω) |
23 | 19, 20, 22 | 3imtr4i 284 | . . 3 ⊢ (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥) |
24 | 11, 13, 23 | 3syl 18 | . 2 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) |
25 | 1, 8, 24 | vtocl 3478 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 {crab 3092 Vcvv 3415 ∩ cin 3828 ⊆ wss 3829 ∅c0 4178 𝒫 cpw 4422 ∪ cuni 4712 class class class wbr 4929 ↦ cmpt 5008 ↾ cres 5409 –1-1→wf1 6185 ωcom 7396 reccrdg 7849 ≼ cdom 8304 ≺ csdm 8305 Fincfn 8306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-reg 8851 ax-inf2 8898 ax-cc 9655 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-dju 9124 df-card 9162 |
This theorem is referenced by: axgroth3 10051 |
Copyright terms: Public domain | W3C validator |