MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dominf Structured version   Visualization version   GIF version

Theorem dominf 10346
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc 10336. See dominfac 10474 for a version proved from ax-ac 10360. The axiom of Regularity is used for this proof, via inf3lem6 9533, and its use is necessary: otherwise the set 𝐴 = {𝐴} or 𝐴 = {∅, 𝐴} (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013.)
Hypothesis
Ref Expression
dominf.1 𝐴 ∈ V
Assertion
Ref Expression
dominf ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)

Proof of Theorem dominf
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dominf.1 . 2 𝐴 ∈ V
2 neeq1 2992 . . . 4 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 unieq 4871 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
53, 4sseq12d 3965 . . . 4 (𝑥 = 𝐴 → (𝑥 𝑥𝐴 𝐴))
62, 5anbi12d 632 . . 3 (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 𝐴)))
7 breq2 5099 . . 3 (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴))
86, 7imbi12d 344 . 2 (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)))
9 eqid 2733 . . . 4 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
10 eqid 2733 . . . 4 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
119, 10, 1, 1inf3lem6 9533 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥)
12 vpwex 5319 . . . 4 𝒫 𝑥 ∈ V
1312f1dom 8905 . . 3 ((rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥)
14 pwfi 9213 . . . . . . 7 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
1514biimpi 216 . . . . . 6 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
16 isfinite 9552 . . . . . 6 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
17 isfinite 9552 . . . . . 6 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
1815, 16, 173imtr3i 291 . . . . 5 (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω)
1918con3i 154 . . . 4 (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω)
2012domtriom 10344 . . . 4 (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω)
21 vex 3442 . . . . 5 𝑥 ∈ V
2221domtriom 10344 . . . 4 (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω)
2319, 20, 223imtr4i 292 . . 3 (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥)
2411, 13, 233syl 18 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥)
251, 8, 24vtocl 3513 1 ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  {crab 3397  Vcvv 3438  cin 3898  wss 3899  c0 4284  𝒫 cpw 4551   cuni 4860   class class class wbr 5095  cmpt 5176  cres 5623  1-1wf1 6486  ωcom 7805  reccrdg 8337  cdom 8876  csdm 8877  Fincfn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9488  ax-inf2 9541  ax-cc 10336
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-dju 9804  df-card 9842
This theorem is referenced by:  axgroth3  10732
  Copyright terms: Public domain W3C validator