| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dominf | Structured version Visualization version GIF version | ||
| Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc 10318. See dominfac 10456 for a version proved from ax-ac 10342. The axiom of Regularity is used for this proof, via inf3lem6 9518, and its use is necessary: otherwise the set 𝐴 = {𝐴} or 𝐴 = {∅, 𝐴} (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| dominf.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dominf | ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dominf.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | neeq1 2988 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | unieq 4868 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 5 | 3, 4 | sseq12d 3966 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ 𝑥 ↔ 𝐴 ⊆ ∪ 𝐴)) |
| 6 | 2, 5 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴))) |
| 7 | breq2 5093 | . . 3 ⊢ (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴)) | |
| 8 | 6, 7 | imbi12d 344 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴))) |
| 9 | eqid 2730 | . . . 4 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 10 | eqid 2730 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
| 11 | 9, 10, 1, 1 | inf3lem6 9518 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥) |
| 12 | vpwex 5313 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
| 13 | 12 | f1dom 8891 | . . 3 ⊢ ((rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥) |
| 14 | pwfi 9198 | . . . . . . 7 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
| 15 | 14 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
| 16 | isfinite 9537 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝑥 ≺ ω) | |
| 17 | isfinite 9537 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω) | |
| 18 | 15, 16, 17 | 3imtr3i 291 | . . . . 5 ⊢ (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω) |
| 19 | 18 | con3i 154 | . . . 4 ⊢ (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω) |
| 20 | 12 | domtriom 10326 | . . . 4 ⊢ (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω) |
| 21 | vex 3438 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 22 | 21 | domtriom 10326 | . . . 4 ⊢ (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω) |
| 23 | 19, 20, 22 | 3imtr4i 292 | . . 3 ⊢ (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥) |
| 24 | 11, 13, 23 | 3syl 18 | . 2 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ≼ 𝑥) |
| 25 | 1, 8, 24 | vtocl 3511 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 {crab 3393 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 ∪ cuni 4857 class class class wbr 5089 ↦ cmpt 5170 ↾ cres 5616 –1-1→wf1 6474 ωcom 7791 reccrdg 8323 ≼ cdom 8862 ≺ csdm 8863 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-cc 10318 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 |
| This theorem is referenced by: axgroth3 10714 |
| Copyright terms: Public domain | W3C validator |