MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcomex Structured version   Visualization version   GIF version

Theorem dcomex 10516
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
dcomex ω ∈ V

Proof of Theorem dcomex
Dummy variables 𝑡 𝑠 𝑥 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8544 . . . . . . 7 1o ≠ ∅
2 df-br 5167 . . . . . . . 8 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) ↔ ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩})
3 elsni 4665 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩} → ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1o, 1o⟩)
4 fvex 6933 . . . . . . . . . 10 (𝑓𝑛) ∈ V
5 fvex 6933 . . . . . . . . . 10 (𝑓‘suc 𝑛) ∈ V
64, 5opth1 5495 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1o, 1o⟩ → (𝑓𝑛) = 1o)
73, 6syl 17 . . . . . . . 8 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩} → (𝑓𝑛) = 1o)
82, 7sylbi 217 . . . . . . 7 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → (𝑓𝑛) = 1o)
9 tz6.12i 6948 . . . . . . 7 (1o ≠ ∅ → ((𝑓𝑛) = 1o𝑛𝑓1o))
101, 8, 9mpsyl 68 . . . . . 6 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → 𝑛𝑓1o)
11 vex 3492 . . . . . . 7 𝑛 ∈ V
12 1oex 8532 . . . . . . 7 1o ∈ V
1311, 12breldm 5933 . . . . . 6 (𝑛𝑓1o𝑛 ∈ dom 𝑓)
1410, 13syl 17 . . . . 5 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → 𝑛 ∈ dom 𝑓)
1514ralimi 3089 . . . 4 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
16 dfss3 3997 . . . 4 (ω ⊆ dom 𝑓 ↔ ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
1715, 16sylibr 234 . . 3 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ω ⊆ dom 𝑓)
18 vex 3492 . . . . 5 𝑓 ∈ V
1918dmex 7949 . . . 4 dom 𝑓 ∈ V
2019ssex 5339 . . 3 (ω ⊆ dom 𝑓 → ω ∈ V)
2117, 20syl 17 . 2 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ω ∈ V)
22 snex 5451 . . 3 {⟨1o, 1o⟩} ∈ V
2312, 12fvsn 7215 . . . . . . . 8 ({⟨1o, 1o⟩}‘1o) = 1o
2412, 12funsn 6631 . . . . . . . . 9 Fun {⟨1o, 1o⟩}
2512snid 4684 . . . . . . . . . 10 1o ∈ {1o}
2612dmsnop 6247 . . . . . . . . . 10 dom {⟨1o, 1o⟩} = {1o}
2725, 26eleqtrri 2843 . . . . . . . . 9 1o ∈ dom {⟨1o, 1o⟩}
28 funbrfvb 6975 . . . . . . . . 9 ((Fun {⟨1o, 1o⟩} ∧ 1o ∈ dom {⟨1o, 1o⟩}) → (({⟨1o, 1o⟩}‘1o) = 1o ↔ 1o{⟨1o, 1o⟩}1o))
2924, 27, 28mp2an 691 . . . . . . . 8 (({⟨1o, 1o⟩}‘1o) = 1o ↔ 1o{⟨1o, 1o⟩}1o)
3023, 29mpbi 230 . . . . . . 7 1o{⟨1o, 1o⟩}1o
31 breq12 5171 . . . . . . . 8 ((𝑠 = 1o𝑡 = 1o) → (𝑠{⟨1o, 1o⟩}𝑡 ↔ 1o{⟨1o, 1o⟩}1o))
3212, 12, 31spc2ev 3620 . . . . . . 7 (1o{⟨1o, 1o⟩}1o → ∃𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡)
3330, 32ax-mp 5 . . . . . 6 𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡
34 breq 5168 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → (𝑠𝑥𝑡𝑠{⟨1o, 1o⟩}𝑡))
35342exbidv 1923 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → (∃𝑠𝑡 𝑠𝑥𝑡 ↔ ∃𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡))
3633, 35mpbiri 258 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → ∃𝑠𝑡 𝑠𝑥𝑡)
37 ssid 4031 . . . . . . 7 {1o} ⊆ {1o}
3812rnsnop 6255 . . . . . . 7 ran {⟨1o, 1o⟩} = {1o}
3937, 38, 263sstr4i 4052 . . . . . 6 ran {⟨1o, 1o⟩} ⊆ dom {⟨1o, 1o⟩}
40 rneq 5961 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → ran 𝑥 = ran {⟨1o, 1o⟩})
41 dmeq 5928 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → dom 𝑥 = dom {⟨1o, 1o⟩})
4240, 41sseq12d 4042 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → (ran 𝑥 ⊆ dom 𝑥 ↔ ran {⟨1o, 1o⟩} ⊆ dom {⟨1o, 1o⟩}))
4339, 42mpbiri 258 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → ran 𝑥 ⊆ dom 𝑥)
44 pm5.5 361 . . . . 5 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
4536, 43, 44syl2anc 583 . . . 4 (𝑥 = {⟨1o, 1o⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
46 breq 5168 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4746ralbidv 3184 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4847exbidv 1920 . . . 4 (𝑥 = {⟨1o, 1o⟩} → (∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4945, 48bitrd 279 . . 3 (𝑥 = {⟨1o, 1o⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
50 ax-dc 10515 . . 3 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
5122, 49, 50vtocl 3570 . 2 𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)
5221, 51exlimiiv 1930 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  dom cdm 5700  ran crn 5701  suc csuc 6397  Fun wfun 6567  cfv 6573  ωcom 7903  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-1o 8522
This theorem is referenced by:  axdc2lem  10517  axdc3lem  10519  axdc4lem  10524  axcclem  10526  precsexlem10  28258  seqsex  28309  noseqex  28313
  Copyright terms: Public domain W3C validator