MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcomex Structured version   Visualization version   GIF version

Theorem dcomex 10400
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
dcomex ω ∈ V

Proof of Theorem dcomex
Dummy variables 𝑡 𝑠 𝑥 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8452 . . . . . . 7 1o ≠ ∅
2 df-br 5108 . . . . . . . 8 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) ↔ ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩})
3 elsni 4606 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩} → ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1o, 1o⟩)
4 fvex 6871 . . . . . . . . . 10 (𝑓𝑛) ∈ V
5 fvex 6871 . . . . . . . . . 10 (𝑓‘suc 𝑛) ∈ V
64, 5opth1 5435 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1o, 1o⟩ → (𝑓𝑛) = 1o)
73, 6syl 17 . . . . . . . 8 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩} → (𝑓𝑛) = 1o)
82, 7sylbi 217 . . . . . . 7 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → (𝑓𝑛) = 1o)
9 tz6.12i 6886 . . . . . . 7 (1o ≠ ∅ → ((𝑓𝑛) = 1o𝑛𝑓1o))
101, 8, 9mpsyl 68 . . . . . 6 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → 𝑛𝑓1o)
11 vex 3451 . . . . . . 7 𝑛 ∈ V
12 1oex 8444 . . . . . . 7 1o ∈ V
1311, 12breldm 5872 . . . . . 6 (𝑛𝑓1o𝑛 ∈ dom 𝑓)
1410, 13syl 17 . . . . 5 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → 𝑛 ∈ dom 𝑓)
1514ralimi 3066 . . . 4 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
16 dfss3 3935 . . . 4 (ω ⊆ dom 𝑓 ↔ ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
1715, 16sylibr 234 . . 3 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ω ⊆ dom 𝑓)
18 vex 3451 . . . . 5 𝑓 ∈ V
1918dmex 7885 . . . 4 dom 𝑓 ∈ V
2019ssex 5276 . . 3 (ω ⊆ dom 𝑓 → ω ∈ V)
2117, 20syl 17 . 2 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ω ∈ V)
22 snex 5391 . . 3 {⟨1o, 1o⟩} ∈ V
2312, 12fvsn 7155 . . . . . . . 8 ({⟨1o, 1o⟩}‘1o) = 1o
2412, 12funsn 6569 . . . . . . . . 9 Fun {⟨1o, 1o⟩}
2512snid 4626 . . . . . . . . . 10 1o ∈ {1o}
2612dmsnop 6189 . . . . . . . . . 10 dom {⟨1o, 1o⟩} = {1o}
2725, 26eleqtrri 2827 . . . . . . . . 9 1o ∈ dom {⟨1o, 1o⟩}
28 funbrfvb 6914 . . . . . . . . 9 ((Fun {⟨1o, 1o⟩} ∧ 1o ∈ dom {⟨1o, 1o⟩}) → (({⟨1o, 1o⟩}‘1o) = 1o ↔ 1o{⟨1o, 1o⟩}1o))
2924, 27, 28mp2an 692 . . . . . . . 8 (({⟨1o, 1o⟩}‘1o) = 1o ↔ 1o{⟨1o, 1o⟩}1o)
3023, 29mpbi 230 . . . . . . 7 1o{⟨1o, 1o⟩}1o
31 breq12 5112 . . . . . . . 8 ((𝑠 = 1o𝑡 = 1o) → (𝑠{⟨1o, 1o⟩}𝑡 ↔ 1o{⟨1o, 1o⟩}1o))
3212, 12, 31spc2ev 3573 . . . . . . 7 (1o{⟨1o, 1o⟩}1o → ∃𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡)
3330, 32ax-mp 5 . . . . . 6 𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡
34 breq 5109 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → (𝑠𝑥𝑡𝑠{⟨1o, 1o⟩}𝑡))
35342exbidv 1924 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → (∃𝑠𝑡 𝑠𝑥𝑡 ↔ ∃𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡))
3633, 35mpbiri 258 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → ∃𝑠𝑡 𝑠𝑥𝑡)
37 ssid 3969 . . . . . . 7 {1o} ⊆ {1o}
3812rnsnop 6197 . . . . . . 7 ran {⟨1o, 1o⟩} = {1o}
3937, 38, 263sstr4i 3998 . . . . . 6 ran {⟨1o, 1o⟩} ⊆ dom {⟨1o, 1o⟩}
40 rneq 5900 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → ran 𝑥 = ran {⟨1o, 1o⟩})
41 dmeq 5867 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → dom 𝑥 = dom {⟨1o, 1o⟩})
4240, 41sseq12d 3980 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → (ran 𝑥 ⊆ dom 𝑥 ↔ ran {⟨1o, 1o⟩} ⊆ dom {⟨1o, 1o⟩}))
4339, 42mpbiri 258 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → ran 𝑥 ⊆ dom 𝑥)
44 pm5.5 361 . . . . 5 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
4536, 43, 44syl2anc 584 . . . 4 (𝑥 = {⟨1o, 1o⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
46 breq 5109 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4746ralbidv 3156 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4847exbidv 1921 . . . 4 (𝑥 = {⟨1o, 1o⟩} → (∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4945, 48bitrd 279 . . 3 (𝑥 = {⟨1o, 1o⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
50 ax-dc 10399 . . 3 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
5122, 49, 50vtocl 3524 . 2 𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)
5221, 51exlimiiv 1931 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  dom cdm 5638  ran crn 5639  suc csuc 6334  Fun wfun 6505  cfv 6511  ωcom 7842  1oc1o 8427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-dc 10399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-1o 8434
This theorem is referenced by:  axdc2lem  10401  axdc3lem  10403  axdc4lem  10408  axcclem  10410  precsexlem10  28118  seqsex  28179  noseqex  28183
  Copyright terms: Public domain W3C validator