MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcomex Structured version   Visualization version   GIF version

Theorem dcomex 10448
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
dcomex ω ∈ V

Proof of Theorem dcomex
Dummy variables 𝑡 𝑠 𝑥 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8494 . . . . . . 7 1o ≠ ∅
2 df-br 5149 . . . . . . . 8 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) ↔ ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩})
3 elsni 4645 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩} → ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1o, 1o⟩)
4 fvex 6904 . . . . . . . . . 10 (𝑓𝑛) ∈ V
5 fvex 6904 . . . . . . . . . 10 (𝑓‘suc 𝑛) ∈ V
64, 5opth1 5475 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1o, 1o⟩ → (𝑓𝑛) = 1o)
73, 6syl 17 . . . . . . . 8 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1o, 1o⟩} → (𝑓𝑛) = 1o)
82, 7sylbi 216 . . . . . . 7 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → (𝑓𝑛) = 1o)
9 tz6.12i 6919 . . . . . . 7 (1o ≠ ∅ → ((𝑓𝑛) = 1o𝑛𝑓1o))
101, 8, 9mpsyl 68 . . . . . 6 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → 𝑛𝑓1o)
11 vex 3477 . . . . . . 7 𝑛 ∈ V
12 1oex 8482 . . . . . . 7 1o ∈ V
1311, 12breldm 5908 . . . . . 6 (𝑛𝑓1o𝑛 ∈ dom 𝑓)
1410, 13syl 17 . . . . 5 ((𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → 𝑛 ∈ dom 𝑓)
1514ralimi 3082 . . . 4 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
16 dfss3 3970 . . . 4 (ω ⊆ dom 𝑓 ↔ ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
1715, 16sylibr 233 . . 3 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ω ⊆ dom 𝑓)
18 vex 3477 . . . . 5 𝑓 ∈ V
1918dmex 7906 . . . 4 dom 𝑓 ∈ V
2019ssex 5321 . . 3 (ω ⊆ dom 𝑓 → ω ∈ V)
2117, 20syl 17 . 2 (∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛) → ω ∈ V)
22 snex 5431 . . 3 {⟨1o, 1o⟩} ∈ V
2312, 12fvsn 7181 . . . . . . . 8 ({⟨1o, 1o⟩}‘1o) = 1o
2412, 12funsn 6601 . . . . . . . . 9 Fun {⟨1o, 1o⟩}
2512snid 4664 . . . . . . . . . 10 1o ∈ {1o}
2612dmsnop 6215 . . . . . . . . . 10 dom {⟨1o, 1o⟩} = {1o}
2725, 26eleqtrri 2831 . . . . . . . . 9 1o ∈ dom {⟨1o, 1o⟩}
28 funbrfvb 6946 . . . . . . . . 9 ((Fun {⟨1o, 1o⟩} ∧ 1o ∈ dom {⟨1o, 1o⟩}) → (({⟨1o, 1o⟩}‘1o) = 1o ↔ 1o{⟨1o, 1o⟩}1o))
2924, 27, 28mp2an 689 . . . . . . . 8 (({⟨1o, 1o⟩}‘1o) = 1o ↔ 1o{⟨1o, 1o⟩}1o)
3023, 29mpbi 229 . . . . . . 7 1o{⟨1o, 1o⟩}1o
31 breq12 5153 . . . . . . . 8 ((𝑠 = 1o𝑡 = 1o) → (𝑠{⟨1o, 1o⟩}𝑡 ↔ 1o{⟨1o, 1o⟩}1o))
3212, 12, 31spc2ev 3597 . . . . . . 7 (1o{⟨1o, 1o⟩}1o → ∃𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡)
3330, 32ax-mp 5 . . . . . 6 𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡
34 breq 5150 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → (𝑠𝑥𝑡𝑠{⟨1o, 1o⟩}𝑡))
35342exbidv 1926 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → (∃𝑠𝑡 𝑠𝑥𝑡 ↔ ∃𝑠𝑡 𝑠{⟨1o, 1o⟩}𝑡))
3633, 35mpbiri 258 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → ∃𝑠𝑡 𝑠𝑥𝑡)
37 ssid 4004 . . . . . . 7 {1o} ⊆ {1o}
3812rnsnop 6223 . . . . . . 7 ran {⟨1o, 1o⟩} = {1o}
3937, 38, 263sstr4i 4025 . . . . . 6 ran {⟨1o, 1o⟩} ⊆ dom {⟨1o, 1o⟩}
40 rneq 5935 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → ran 𝑥 = ran {⟨1o, 1o⟩})
41 dmeq 5903 . . . . . . 7 (𝑥 = {⟨1o, 1o⟩} → dom 𝑥 = dom {⟨1o, 1o⟩})
4240, 41sseq12d 4015 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → (ran 𝑥 ⊆ dom 𝑥 ↔ ran {⟨1o, 1o⟩} ⊆ dom {⟨1o, 1o⟩}))
4339, 42mpbiri 258 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → ran 𝑥 ⊆ dom 𝑥)
44 pm5.5 361 . . . . 5 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
4536, 43, 44syl2anc 583 . . . 4 (𝑥 = {⟨1o, 1o⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
46 breq 5150 . . . . . 6 (𝑥 = {⟨1o, 1o⟩} → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4746ralbidv 3176 . . . . 5 (𝑥 = {⟨1o, 1o⟩} → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4847exbidv 1923 . . . 4 (𝑥 = {⟨1o, 1o⟩} → (∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
4945, 48bitrd 279 . . 3 (𝑥 = {⟨1o, 1o⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)))
50 ax-dc 10447 . . 3 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
5122, 49, 50vtocl 3545 . 2 𝑓𝑛 ∈ ω (𝑓𝑛){⟨1o, 1o⟩} (𝑓‘suc 𝑛)
5221, 51exlimiiv 1933 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  wne 2939  wral 3060  Vcvv 3473  wss 3948  c0 4322  {csn 4628  cop 4634   class class class wbr 5148  dom cdm 5676  ran crn 5677  suc csuc 6366  Fun wfun 6537  cfv 6543  ωcom 7859  1oc1o 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729  ax-dc 10447
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-1o 8472
This theorem is referenced by:  axdc2lem  10449  axdc3lem  10451  axdc4lem  10456  axcclem  10458  precsexlem10  28027  n0sex  28073
  Copyright terms: Public domain W3C validator