| Metamath
Proof Explorer Theorem List (p. 105 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | axdc2lem 10401* | Lemma for axdc2 10402. We construct a relation 𝑅 based on 𝐹 such that 𝑥𝑅𝑦 iff 𝑦 ∈ (𝐹‘𝑥), and show that the "function" described by ax-dc 10399 can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} & ⊢ 𝐺 = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) ⇒ ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) | ||
| Theorem | axdc2 10402* | An apparent strengthening of ax-dc 10399 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) | ||
| Theorem | axdc3lem 10403* | The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Contributed by Mario Carneiro, 27-Jan-2013.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} ⇒ ⊢ 𝑆 ∈ V | ||
| Theorem | axdc3lem2 10404* | Lemma for axdc3 10407. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 10399 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (ℎ‘𝑛):𝑚⟶𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 10399 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence ℎ, we can construct the sequence 𝑔 that we are after. (Contributed by Mario Carneiro, 30-Jan-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) ⇒ ⊢ (∃ℎ(ℎ:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝐺‘(ℎ‘𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) | ||
| Theorem | axdc3lem3 10405* | Simple substitution lemma for axdc3 10407. (Contributed by Mario Carneiro, 27-Jan-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚⟶𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵‘𝑘)))) | ||
| Theorem | axdc3lem4 10406* | Lemma for axdc3 10407. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 10399 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (ℎ‘𝑛):𝑚⟶𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 10399 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that 𝑆 is nonempty, and that 𝐺 always maps to a nonempty subset of 𝑆, so that we can apply axdc2 10402. See axdc3lem2 10404 for the rest of the proof. (Contributed by Mario Carneiro, 27-Jan-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) | ||
| Theorem | axdc3 10407* | Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) | ||
| Theorem | axdc4lem 10408* | Lemma for axdc4 10409. (Contributed by Mario Carneiro, 31-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐺 = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ({suc 𝑛} × (𝑛𝐹𝑥))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
| Theorem | axdc4 10409* | A more general version of axdc3 10407 that allows the function 𝐹 to vary with 𝑘. (Contributed by Mario Carneiro, 31-Jan-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
| Theorem | axcclem 10410* | Lemma for axcc 10411. (Contributed by Mario Carneiro, 2-Feb-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ 𝐴 = (𝑥 ∖ {∅}) & ⊢ 𝐹 = (𝑛 ∈ ω, 𝑦 ∈ ∪ 𝐴 ↦ (𝑓‘𝑛)) & ⊢ 𝐺 = (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))) ⇒ ⊢ (𝑥 ≈ ω → ∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) | ||
| Theorem | axcc 10411* | Although CC can be proven trivially using ac5 10430, we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | ||
| Axiom | ax-ac 10412* |
Axiom of Choice. The Axiom of Choice (AC) is usually considered an
extension of ZF set theory rather than a proper part of it. It is
sometimes considered philosophically controversial because it asserts
the existence of a set without telling us what the set is. ZF set
theory that includes AC is called ZFC.
The unpublished version given here says that given any set 𝑥, there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. See the rewritten version ac3 10415 for a more detailed explanation. Theorem ac2 10414 shows an equivalent written compactly with restricted quantifiers. This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 10418 is slightly shorter when the biconditional of ax-ac 10412 is expanded into implication and negation. In axac3 10417 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 10634 (the Generalized Continuum Hypothesis implies the Axiom of Choice). Standard textbook versions of AC are derived as ac8 10445, ac5 10430, and ac7 10426. The Axiom of Regularity ax-reg 9545 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as Theorem dfac2b 10084. Equivalents to AC are the well-ordering theorem weth 10448 and Zorn's lemma zorn 10460. See ac4 10428 for comments about stronger versions of AC. In order to avoid uses of ax-reg 9545 for derivation of AC equivalents, we provide ax-ac2 10416 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 10416 from ax-ac 10412 is shown by Theorem axac2 10419, and the reverse derivation by axac 10420. Therefore, new proofs should normally use ax-ac2 10416 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.) |
| ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) | ||
| Theorem | zfac 10413* | Axiom of Choice expressed with the fewest number of different variables. The penultimate step shows the logical equivalence to ax-ac 10412. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
| Theorem | ac2 10414* | Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 10415 is easier to understand.) Note: aceq0 10071 shows the logical equivalence to ax-ac 10412. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.) |
| ⊢ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) | ||
| Theorem | ac3 10415* |
Axiom of Choice using abbreviations. The logical equivalence to ax-ac 10412
can be established by chaining aceq0 10071 and aceq2 10072. A standard
textbook version of AC is derived from this one in dfac2a 10083, and this
version of AC is derived from the textbook version in dfac2b 10084, showing
their logical equivalence (see dfac2 10085).
The following sketch will help you understand this version of the axiom. Given any set 𝑥, the axiom says that there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. Using the Axiom of Regularity, we can show that 𝑦 is really a set of ordered pairs, very similar to the ordered pair construction opthreg 9571. The key theorem for this (used in the proof of dfac2b 10084) is preleq 9569. With this modified definition of ordered pair, it can be seen that 𝑦 is actually a choice function on the members of 𝑥. For example, suppose 𝑥 = {{1, 2}, {1, 3}, {2, 3, 4}}. Let us try 𝑦 = {{{1, 2}, 1}, {{1, 3}, 1}, {{2, 3, 4}, 2}}. For the member (of 𝑥) 𝑧 = {1, 2}, the only assignment to 𝑤 and 𝑣 that satisfies the axiom is 𝑤 = 1 and 𝑣 = {{1, 2}, 1}, so there is exactly one 𝑤 as required. We verify the other two members of 𝑥 similarly. Thus, 𝑦 satisfies the axiom. Using our modified ordered pair definition, we can say that 𝑦 corresponds to the choice function {〈{1, 2}, 1〉, 〈{1, 3}, 1〉, 〈{2, 3, 4}, 2〉}. Of course other choices for 𝑦 will also satisfy the axiom, for example 𝑦 = {{{1, 2}, 2}, {{1, 3}, 1}, {{2, 3, 4}, 4}}. What AC tells us is that there exists at least one such 𝑦, but it doesn't tell us which one. (New usage is discouraged.) (Contributed by NM, 19-Jul-1996.) |
| ⊢ ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) | ||
| Axiom | ax-ac2 10416* | In order to avoid uses of ax-reg 9545 for derivation of AC equivalents, we provide ax-ac2 10416, which is equivalent to the standard AC of textbooks. This appears to be the shortest known equivalent to the standard AC when expressed in terms of set theory primitives. It was found by Kurt Maes as Theorem ackm 10418. We removed the leading quantifier to make it slightly shorter, since we have ax-gen 1795 available. The derivation of ax-ac2 10416 from ax-ac 10412 is shown by Theorem axac2 10419, and the reverse derivation by axac 10420. Note that we use ax-reg 9545 to derive ax-ac 10412 from ax-ac2 10416, but not to derive ax-ac2 10416 from ax-ac 10412. (Contributed by NM, 19-Dec-2016.) |
| ⊢ ∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣))))) | ||
| Theorem | axac3 10417 | This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10416 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.) |
| ⊢ CHOICE | ||
| Theorem | ackm 10418* |
A remarkable equivalent to the Axiom of Choice that has only five
quantifiers (when expanded to use only the primitive predicates =
and ∈ and in prenex normal form),
discovered and proved by Kurt
Maes. This establishes a new record, reducing from 6 to 5 the largest
number of quantified variables needed by any ZFC axiom. The
ZF-equivalence to AC is shown by Theorem dfackm 10120. Maes found this
version of AC in April 2004 (replacing a longer version, also with five
quantifiers, that he found in November 2003). See Kurt Maes, "A
5-quantifier (∈ , =)-expression
ZF-equivalent to the Axiom of
Choice", https://doi.org/10.48550/arXiv.0705.3162 10120.
The original FOM posts are: http://www.cs.nyu.edu/pipermail/fom/2003-November/007631.html 10120 http://www.cs.nyu.edu/pipermail/fom/2003-November/007641.html 10120. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) (Proof modification is discouraged.) |
| ⊢ ∀𝑥∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣))))) | ||
| Theorem | axac2 10419* | Derive ax-ac2 10416 from ax-ac 10412. (Contributed by NM, 19-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣))))) | ||
| Theorem | axac 10420* | Derive ax-ac 10412 from ax-ac2 10416. Note that ax-reg 9545 is used by the proof. (Contributed by NM, 19-Dec-2016.) (Proof modification is discouraged.) |
| ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) | ||
| Theorem | axaci 10421 | Apply a choice equivalent. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | cardeqv 10422 | All sets are well-orderable under choice. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ dom card = V | ||
| Theorem | numth3 10423 | All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) | ||
| Theorem | numth2 10424* | Numeration theorem: any set is equinumerous to some ordinal (using AC). Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 20-Oct-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 ∈ On 𝑥 ≈ 𝐴 | ||
| Theorem | numth 10425* | Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Mario Carneiro, 8-Jan-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 ∈ On ∃𝑓 𝑓:𝑥–1-1-onto→𝐴 | ||
| Theorem | ac7 10426* | An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 29-Apr-2004.) |
| ⊢ ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) | ||
| Theorem | ac7g 10427* | An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.) |
| ⊢ (𝑅 ∈ 𝐴 → ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅)) | ||
| Theorem | ac4 10428* |
Equivalent of Axiom of Choice. We do not insist that 𝑓 be a
function. However, Theorem ac5 10430, derived from this one, shows that
this form of the axiom does imply that at least one such set 𝑓 whose
existence we assert is in fact a function. Axiom of Choice of
[TakeutiZaring] p. 83.
Takeuti and Zaring call this "weak choice" in contrast to "strong choice" ∃𝐹∀𝑧(𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧), which asserts the existence of a universal choice function but requires second-order quantification on (proper) class variable 𝐹 and thus cannot be expressed in our first-order formalization. However, it has been shown that ZF plus strong choice is a conservative extension of ZF plus weak choice. See Ulrich Felgner, "Comparison of the axioms of local and universal choice", Fundamenta Mathematica, 71, 43-62 (1971). Weak choice can be strengthened in a different direction to choose from a collection of proper classes; see ac6s5 10444. (Contributed by NM, 21-Jul-1996.) |
| ⊢ ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) | ||
| Theorem | ac4c 10429* | Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) | ||
| Theorem | ac5 10430* | An Axiom of Choice equivalent: there exists a function 𝑓 (called a choice function) with domain 𝐴 that maps each nonempty member of the domain to an element of that member. Axiom AC of [BellMachover] p. 488. Note that the assertion that 𝑓 be a function is not necessary; see ac4 10428. (Contributed by NM, 29-Aug-1999.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) | ||
| Theorem | ac5b 10431* | Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
| Theorem | ac6num 10432* | A version of ac6 10433 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ac6 10433* | Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set 𝐵, where 𝜑 depends on 𝑥 (the natural number) and 𝑦 (to specify a member of 𝐵). A stronger version of this theorem, ac6s 10437, allows 𝐵 to be a proper class. (Contributed by NM, 18-Oct-1999.) (Revised by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ac6c4 10434* | Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | ||
| Theorem | ac6c5 10435* | Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. Remark after Theorem 10.46 of [TakeutiZaring] p. 98. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) | ||
| Theorem | ac9 10436* | An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) | ||
| Theorem | ac6s 10437* | Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 9846, we derive this strong version of ac6 10433 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ac6n 10438* | Equivalent of Axiom of Choice. Contrapositive of ac6s 10437. (Contributed by NM, 10-Jun-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | ac6s2 10439* | Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 10440. (Contributed by NM, 29-Sep-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ac6s3 10440* | Generalization of the Axiom of Choice to classes. Theorem 10.46 of [TakeutiZaring] p. 97. (Contributed by NM, 3-Nov-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | ac6sg 10441* | ac6s 10437 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | ac6sf 10442* | Version of ac6 10433 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) |
| ⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ac6s4 10443* | Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. (Contributed by NM, 29-Sep-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | ||
| Theorem | ac6s5 10444* | Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. Remark after Theorem 10.46 of [TakeutiZaring] p. 98. (Contributed by NM, 27-Mar-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) | ||
| Theorem | ac8 10445* | An Axiom of Choice equivalent. Given a family 𝑥 of mutually disjoint nonempty sets, there exists a set 𝑦 containing exactly one member from each set in the family. Theorem 6M(4) of [Enderton] p. 151. (Contributed by NM, 14-May-2004.) |
| ⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) | ||
| Theorem | ac9s 10446* | An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. This is a stronger version of the axiom in Enderton, with no existence requirement for the family of classes 𝐵(𝑥) (achieved via the Collection Principle cp 9844). (Contributed by NM, 29-Sep-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) | ||
| Theorem | numthcor 10447* | Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | ||
| Theorem | weth 10448* | Well-ordering theorem: any set 𝐴 can be well-ordered. This is an equivalent of the Axiom of Choice. Theorem 6 of [Suppes] p. 242. First proved by Ernst Zermelo (the "Z" in ZFC) in 1904. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 We 𝐴) | ||
| Theorem | zorn2lem1 10449* | Lemma for zorn2 10459. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) | ||
| Theorem | zorn2lem2 10450* | Lemma for zorn2 10459. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | ||
| Theorem | zorn2lem3 10451* | Lemma for zorn2 10459. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) | ||
| Theorem | zorn2lem4 10452* | Lemma for zorn2 10459. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅) | ||
| Theorem | zorn2lem5 10453* | Lemma for zorn2 10459. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} & ⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ⇒ ⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝐹 “ 𝑥) ⊆ 𝐴) | ||
| Theorem | zorn2lem6 10454* | Lemma for zorn2 10459. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} & ⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ⇒ ⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹 “ 𝑥))) | ||
| Theorem | zorn2lem7 10455* | Lemma for zorn2 10459. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} & ⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ⇒ ⊢ ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠) → ∃𝑎 ∈ 𝐴 ∀𝑟 ∈ 𝑠 (𝑟𝑅𝑎 ∨ 𝑟 = 𝑎))) → ∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎𝑅𝑏) | ||
| Theorem | zorn2g 10456* | Zorn's Lemma of [Monk1] p. 117. This version of zorn2 10459 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | zorng 10457* | Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10460 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | zornn0g 10458* | Variant of Zorn's lemma zorng 10457 in which ∅, the union of the empty chain, is not required to be an element of 𝐴. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | zorn2 10459* | Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set 𝐴 (with an ordering relation 𝑅) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 10449 through zorn2lem7 10455; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 10455. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | zorn 10460* | Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. This theorem is equivalent to the Axiom of Choice. Theorem 6M of [Enderton] p. 151. See zorn2 10459 for a version with general partial orderings. (Contributed by NM, 12-Aug-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | zornn0 10461* | Variant of Zorn's lemma zorn 10460 in which ∅, the union of the empty chain, is not required to be an element of 𝐴. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | ttukeylem1 10462* | Lemma for ttukey 10471. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) | ||
| Theorem | ttukeylem2 10463* | Lemma for ttukey 10471. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) | ||
| Theorem | ttukeylem3 10464* | Lemma for ttukey 10471. (Contributed by Mario Carneiro, 11-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ On) → (𝐺‘𝐶) = if(𝐶 = ∪ 𝐶, if(𝐶 = ∅, 𝐵, ∪ (𝐺 “ 𝐶)), ((𝐺‘∪ 𝐶) ∪ if(((𝐺‘∪ 𝐶) ∪ {(𝐹‘∪ 𝐶)}) ∈ 𝐴, {(𝐹‘∪ 𝐶)}, ∅)))) | ||
| Theorem | ttukeylem4 10465* | Lemma for ttukey 10471. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ (𝜑 → (𝐺‘∅) = 𝐵) | ||
| Theorem | ttukeylem5 10466* | Lemma for ttukey 10471. The 𝐺 function forms a (transfinitely long) chain of inclusions. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶 ⊆ 𝐷)) → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)) | ||
| Theorem | ttukeylem6 10467* | Lemma for ttukey 10471. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ suc (card‘(∪ 𝐴 ∖ 𝐵))) → (𝐺‘𝐶) ∈ 𝐴) | ||
| Theorem | ttukeylem7 10468* | Lemma for ttukey 10471. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) | ||
| Theorem | ttukey2g 10469* | The Teichmüller-Tukey Lemma ttukey 10471 with a slightly stronger conclusion: we can set up the maximal element of 𝐴 so that it also contains some given 𝐵 ∈ 𝐴 as a subset. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐵 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) | ||
| Theorem | ttukeyg 10470* | The Teichmüller-Tukey Lemma ttukey 10471 stated with the "choice" as an antecedent (the hypothesis ∪ 𝐴 ∈ dom card says that ∪ 𝐴 is well-orderable). (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | ttukey 10471* | The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If 𝐴 is a nonempty collection of finite character, then 𝐴 has a maximal element with respect to inclusion. Here "finite character" means that 𝑥 ∈ 𝐴 iff every finite subset of 𝑥 is in 𝐴. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | axdclem 10472* | Lemma for axdc 10474. (Contributed by Mario Carneiro, 25-Jan-2013.) |
| ⊢ 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) ⇒ ⊢ ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹‘𝐾)𝑥(𝐹‘suc 𝐾))) | ||
| Theorem | axdclem2 10473* | Lemma for axdc 10474. Using the full Axiom of Choice, we can construct a choice function 𝑔 on 𝒫 dom 𝑥. From this, we can build a sequence 𝐹 starting at any value 𝑠 ∈ dom 𝑥 by repeatedly applying 𝑔 to the set (𝐹‘𝑥) (where 𝑥 is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013.) |
| ⊢ 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) ⇒ ⊢ (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) | ||
| Theorem | axdc 10474* | This theorem derives ax-dc 10399 using ax-ac 10412 and ax-inf 9591. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
| ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) | ||
| Theorem | fodomg 10475 | An onto function implies dominance of domain over range. Lemma 10.20 of [Kunen] p. 30. This theorem uses the axiom of choice ac7g 10427. The axiom of choice is not needed for finite sets, see fodomfi 9261. See also fodomnum 10010. (Contributed by NM, 23-Jul-2004.) (Proof shortened by BJ, 20-May-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fodom 10476 | An onto function implies dominance of domain over range. (Contributed by NM, 23-Jul-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴) | ||
| Theorem | dmct 10477 | The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) | ||
| Theorem | rnct 10478 | The range of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → ran 𝐴 ≼ ω) | ||
| Theorem | fodomb 10479* | Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴)) | ||
| Theorem | wdomac 10480 | When assuming AC, weak and usual dominance coincide. It is not known if this is an AC equivalent. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌) | ||
| Theorem | brdom3 10481* | Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
| Theorem | brdom5 10482* | An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
| Theorem | brdom4 10483* | An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐴 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
| Theorem | brdom7disj 10484* | An equivalence to a dominance relation for disjoint sets. (Contributed by NM, 29-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝐴 ∩ 𝐵) = ∅ ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) | ||
| Theorem | brdom6disj 10485* | An equivalence to a dominance relation for disjoint sets. (Contributed by NM, 5-Apr-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝐴 ∩ 𝐵) = ∅ ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) | ||
| Theorem | fin71ac 10486 | Once we allow AC, the "strongest" definition of finite set becomes equivalent to the "weakest" and the entire hierarchy collapses. (Contributed by Stefan O'Rear, 29-Oct-2014.) |
| ⊢ FinVII = Fin | ||
| Theorem | imadomg 10487 | An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | ||
| Theorem | fimact 10488 | The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ ω) | ||
| Theorem | fnrndomg 10489 | The range of a function is dominated by its domain. (Contributed by NM, 1-Sep-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) | ||
| Theorem | fnct 10490 | If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) | ||
| Theorem | mptct 10491* | A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | ||
| Theorem | iunfo 10492* | Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⇒ ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | iundom2g 10493* | An upper bound for the cardinality of a disjoint indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) ⇒ ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) | ||
| Theorem | iundomg 10494* | An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | ||
| Theorem | iundom 10495* | An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) | ||
| Theorem | unidom 10496* | An upper bound for the cardinality of a union. Theorem 10.47 of [TakeutiZaring] p. 98. (Contributed by NM, 25-Mar-2006.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ 𝐵) → ∪ 𝐴 ≼ (𝐴 × 𝐵)) | ||
| Theorem | uniimadom 10497* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
| Theorem | uniimadomf 10498* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10497 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
| Theorem | cardval 10499* | The value of the cardinal number function. Definition 10.4 of [TakeutiZaring] p. 85. See cardval2 9944 for a simpler version of its value. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} | ||
| Theorem | cardid 10500 | Any set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) ≈ 𝐴 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |