Home Metamath Proof ExplorerTheorem List (p. 105 of 452) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28699) Hilbert Space Explorer (28700-30222) Users' Mathboxes (30223-45187)

Theorem List for Metamath Proof Explorer - 10401-10500   *Has distinct variable group(s)
TypeLabelDescription
Statement

Definitiondf-ltp 10401* Define ordering on positive reals. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-3.2 of [Gleason] p. 122. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}

Theoremnpex 10402 The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.)
P ∈ V

Theoremelnp 10403* Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.)
(𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))

Theoremelnpi 10404* Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
(𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))

Theoremprn0 10405 A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
(𝐴P𝐴 ≠ ∅)

Theoremprpssnq 10406 A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
(𝐴P𝐴Q)

Theoremelprnq 10407 A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
((𝐴P𝐵𝐴) → 𝐵Q)

Theorem0npr 10408 The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.)
¬ ∅ ∈ P

Theoremprcdnq 10409 A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))

Theoremprub 10410 A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
(((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))

Theoremprnmax 10411* A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥)

Theoremnpomex 10412 A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 10409 and nsmallnq 10393). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.)
(𝐴P → ω ∈ V)

Theoremprnmadd 10413* A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
((𝐴P𝐵𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)

Theoremltrelpr 10414 Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
<P ⊆ (P × P)

Theoremgenpv 10415* Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})

Theoremgenpelv 10416* Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺)))

Theoremgenpprecl 10417* Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ((𝐶𝐴𝐷𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵)))

Theoremgenpdm 10418* Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       dom 𝐹 = (P × P)

Theoremgenpn0 10419* The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))

Theoremgenpss 10420* The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)

Theoremgenpnnp 10421* The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   (𝑥𝐺𝑦) = (𝑦𝐺𝑥)       ((𝐴P𝐵P) → ¬ (𝐴𝐹𝐵) = Q)

Theoremgenpcd 10422* Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))       ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))

Theoremgenpnmax 10423* An operation on positive reals has no largest member. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   (𝑣Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤)))    &   (𝑧𝐺𝑤) = (𝑤𝐺𝑧)       ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))

Theoremgenpcl 10424* Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))    &   (𝑥𝐺𝑦) = (𝑦𝐺𝑥)    &   ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))       ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)

Theoremgenpass 10425* Associativity of an operation on reals. (Contributed by NM, 18-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   dom 𝐹 = (P × P)    &   ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)    &   ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺))       ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))

Theoremplpv 10426* Value of addition on positive reals. (Contributed by NM, 28-Feb-1996.) (New usage is discouraged.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 +Q 𝑧)})

Theoremmpv 10427* Value of multiplication on positive reals. (Contributed by NM, 28-Feb-1996.) (New usage is discouraged.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 ·Q 𝑧)})

Theoremdmplp 10428 Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.)
dom +P = (P × P)

Theoremdmmp 10429 Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.)
dom ·P = (P × P)

Theoremnqpr 10430* The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
(𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)

Theorem1pr 10431 The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
1PP

Theoremaddclprlem1 10432 Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
(((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))

Theoremaddclprlem2 10433* Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))

Theoremaddclpr 10434 Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)

Theoremmulclprlem 10435* Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))

Theoremmulclpr 10436 Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)

Theoremaddcompr 10437 Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
(𝐴 +P 𝐵) = (𝐵 +P 𝐴)

Theoremaddasspr 10438 Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))

Theoremmulcompr 10439 Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
(𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)

Theoremmulasspr 10440 Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶))

Theoremdistrlem1pr 10441 Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))

Theoremdistrlem4pr 10442* Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
(((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))

Theoremdistrlem5pr 10443 Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))

Theoremdistrpr 10444 Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
(𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))

Theorem1idpr 10445 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.) (New usage is discouraged.)
(𝐴P → (𝐴 ·P 1P) = 𝐴)

Theoremltprord 10446 Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.)
((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))

Theorempsslinpr 10447 Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Theoremltsopr 10448 Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
<P Or P

Theoremprlem934 10449* Lemma 9-3.4 of [Gleason] p. 122. (Contributed by NM, 25-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
𝐵 ∈ V       (𝐴P → ∃𝑥𝐴 ¬ (𝑥 +Q 𝐵) ∈ 𝐴)

Theoremltaddpr 10450 The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Theoremltaddpr2 10451 The sum of two positive reals is greater than one of them. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
(𝐶P → ((𝐴 +P 𝐵) = 𝐶𝐴<P 𝐶))

Theoremltexprlem1 10452* Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.)
𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}       (𝐵P → (𝐴𝐵𝐶 ≠ ∅))

Theoremltexprlem2 10453* Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.)
𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}       (𝐵P𝐶Q)

Theoremltexprlem3 10454* Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}       (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))

Theoremltexprlem4 10455* Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}       (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))

Theoremltexprlem5 10456* Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}       ((𝐵P𝐴𝐵) → 𝐶P)

Theoremltexprlem6 10457* Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}       (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)

Theoremltexprlem7 10458* Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}       (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P 𝐶))

Theoremltexpri 10459* Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
(𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)

Theoremltaprlem 10460 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
(𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Theoremltapr 10461 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
(𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Theoremaddcanpr 10462 Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.)
((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Theoremprlem936 10463* Lemma 9-3.6 of [Gleason] p. 124. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
((𝐴P ∧ 1Q <Q 𝐵) → ∃𝑥𝐴 ¬ (𝑥 ·Q 𝐵) ∈ 𝐴)

Theoremreclem2pr 10464* Lemma for Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}       (𝐴P𝐵P)

Theoremreclem3pr 10465* Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}       (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))

Theoremreclem4pr 10466* Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (New usage is discouraged.)
𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}       (𝐴P → (𝐴 ·P 𝐵) = 1P)

Theoremrecexpr 10467* The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
(𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)

Theoremsuplem1pr 10468* The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)

Theoremsuplem2pr 10469* The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
(𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))

Theoremsupexpr 10470* The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))

Definitiondf-enr 10471* Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}

Definitiondf-nr 10472 Define class of signed reals. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
R = ((P × P) / ~R )

Definitiondf-plr 10473* Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
+R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}

Definitiondf-mr 10474* Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}

Definitiondf-ltr 10475* Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
<R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}

Definitiondf-0r 10476 Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
0R = [⟨1P, 1P⟩] ~R

Definitiondf-1r 10477 Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
1R = [⟨(1P +P 1P), 1P⟩] ~R

Definitiondf-m1r 10478 Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers df-c 10537, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
-1R = [⟨1P, (1P +P 1P)⟩] ~R

Theoremenrer 10479 The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.)
~R Er (P × P)

Theoremnrex1 10480 The class of signed reals is a set. Note that a shorter proof is possible using qsex 8348 (and not requiring enrer 10479), but it would add a dependency on ax-rep 5177. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 10563. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.)
R ∈ V

Theoremenrbreq 10481 Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))

Theoremenreceq 10482 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) (New usage is discouraged.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))

Theoremenrex 10483 The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
~R ∈ V

Theoremltrelsr 10484 Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
<R ⊆ (R × R)

Theoremaddcmpblnr 10485 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))

Theoremmulcmpblnrlem 10486 Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.)
(((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))

Theoremmulcmpblnr 10487 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))

Theoremprsrlem1 10488* Decomposing signed reals into positive reals. Lemma for addsrpr 10491 and mulsrpr 10492. (Contributed by Jim Kingdon, 30-Dec-2019.)
(((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))

Theoremaddsrmo 10489* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))

Theoremmulsrmo 10490* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))

Theoremaddsrpr 10491 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )

Theoremmulsrpr 10492 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ·R [⟨𝐶, 𝐷⟩] ~R ) = [⟨((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))⟩] ~R )

Theoremltsrpr 10493 Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))

Theoremgt0srpr 10494 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
(0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)

Theorem0nsr 10495 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
¬ ∅ ∈ R

Theorem0r 10496 The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
0RR

Theorem1sr 10497 The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
1RR

Theoremm1r 10498 The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
-1RR

Theoremaddclsr 10499 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)

Theoremmulclsr 10500 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45187
 Copyright terms: Public domain < Previous  Next >