MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc Structured version   Visualization version   GIF version

Theorem axdc 10100
Description: This theorem derives ax-dc 10025 using ax-ac 10038 and ax-inf 9231. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
axdc ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Distinct variable group:   𝑓,𝑛,𝑥,𝑦,𝑧

Proof of Theorem axdc
Dummy variables 𝑣 𝑔 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5043 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑢𝑥𝑤𝑢𝑥𝑧))
21cbvabv 2804 . . . . . . . 8 {𝑤𝑢𝑥𝑤} = {𝑧𝑢𝑥𝑧}
3 breq1 5042 . . . . . . . . 9 (𝑢 = 𝑣 → (𝑢𝑥𝑧𝑣𝑥𝑧))
43abbidv 2800 . . . . . . . 8 (𝑢 = 𝑣 → {𝑧𝑢𝑥𝑧} = {𝑧𝑣𝑥𝑧})
52, 4syl5eq 2783 . . . . . . 7 (𝑢 = 𝑣 → {𝑤𝑢𝑥𝑤} = {𝑧𝑣𝑥𝑧})
65fveq2d 6699 . . . . . 6 (𝑢 = 𝑣 → (𝑔‘{𝑤𝑢𝑥𝑤}) = (𝑔‘{𝑧𝑣𝑥𝑧}))
76cbvmptv 5143 . . . . 5 (𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧}))
8 rdgeq1 8125 . . . . 5 ((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦))
9 reseq1 5830 . . . . 5 (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦) → (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦) ↾ ω))
107, 8, 9mp2b 10 . . . 4 (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦) ↾ ω)
1110axdclem2 10099 . . 3 (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
1211exlimiv 1938 . 2 (∃𝑦𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
1312imp 410 1 ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  {cab 2714  wral 3051  Vcvv 3398  wss 3853   class class class wbr 5039  cmpt 5120  dom cdm 5536  ran crn 5537  cres 5538  suc csuc 6193  cfv 6358  ωcom 7622  reccrdg 8123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-ac2 10042
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-ac 9695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator