![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc | Structured version Visualization version GIF version |
Description: This theorem derives ax-dc 9660 using ax-ac 9673 and ax-inf 8889. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4927 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑢𝑥𝑤 ↔ 𝑢𝑥𝑧)) | |
2 | 1 | cbvabv 2904 | . . . . . . . 8 ⊢ {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑢𝑥𝑧} |
3 | breq1 4926 | . . . . . . . . 9 ⊢ (𝑢 = 𝑣 → (𝑢𝑥𝑧 ↔ 𝑣𝑥𝑧)) | |
4 | 3 | abbidv 2837 | . . . . . . . 8 ⊢ (𝑢 = 𝑣 → {𝑧 ∣ 𝑢𝑥𝑧} = {𝑧 ∣ 𝑣𝑥𝑧}) |
5 | 2, 4 | syl5eq 2820 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑣𝑥𝑧}) |
6 | 5 | fveq2d 6497 | . . . . . 6 ⊢ (𝑢 = 𝑣 → (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤}) = (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
7 | 6 | cbvmptv 5022 | . . . . 5 ⊢ (𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
8 | rdgeq1 7845 | . . . . 5 ⊢ ((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦)) | |
9 | reseq1 5683 | . . . . 5 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) → (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω)) | |
10 | 7, 8, 9 | mp2b 10 | . . . 4 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω) |
11 | 10 | axdclem2 9734 | . . 3 ⊢ (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
12 | 11 | exlimiv 1889 | . 2 ⊢ (∃𝑦∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
13 | 12 | imp 398 | 1 ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∃wex 1742 {cab 2752 ∀wral 3082 Vcvv 3409 ⊆ wss 3823 class class class wbr 4923 ↦ cmpt 5002 dom cdm 5401 ran crn 5402 ↾ cres 5403 suc csuc 6025 ‘cfv 6182 ωcom 7390 reccrdg 7843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8892 ax-ac2 9677 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-om 7391 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-ac 9330 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |