![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc | Structured version Visualization version GIF version |
Description: This theorem derives ax-dc 10484 using ax-ac 10497 and ax-inf 9676. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑢𝑥𝑤 ↔ 𝑢𝑥𝑧)) | |
2 | 1 | cbvabv 2810 | . . . . . . . 8 ⊢ {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑢𝑥𝑧} |
3 | breq1 5151 | . . . . . . . . 9 ⊢ (𝑢 = 𝑣 → (𝑢𝑥𝑧 ↔ 𝑣𝑥𝑧)) | |
4 | 3 | abbidv 2806 | . . . . . . . 8 ⊢ (𝑢 = 𝑣 → {𝑧 ∣ 𝑢𝑥𝑧} = {𝑧 ∣ 𝑣𝑥𝑧}) |
5 | 2, 4 | eqtrid 2787 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑣𝑥𝑧}) |
6 | 5 | fveq2d 6911 | . . . . . 6 ⊢ (𝑢 = 𝑣 → (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤}) = (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
7 | 6 | cbvmptv 5261 | . . . . 5 ⊢ (𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
8 | rdgeq1 8450 | . . . . 5 ⊢ ((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦)) | |
9 | reseq1 5994 | . . . . 5 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) → (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω)) | |
10 | 7, 8, 9 | mp2b 10 | . . . 4 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω) |
11 | 10 | axdclem2 10558 | . . 3 ⊢ (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
12 | 11 | exlimiv 1928 | . 2 ⊢ (∃𝑦∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
13 | 12 | imp 406 | 1 ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 {cab 2712 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ran crn 5690 ↾ cres 5691 suc csuc 6388 ‘cfv 6563 ωcom 7887 reccrdg 8448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-ac2 10501 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-ac 10154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |