| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axdc | Structured version Visualization version GIF version | ||
| Description: This theorem derives ax-dc 10334 using ax-ac 10347 and ax-inf 9528. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
| Ref | Expression |
|---|---|
| axdc | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5095 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑧 → (𝑢𝑥𝑤 ↔ 𝑢𝑥𝑧)) | |
| 2 | 1 | cbvabv 2801 | . . . . . . . . 9 ⊢ {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑢𝑥𝑧} |
| 3 | breq1 5094 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑣 → (𝑢𝑥𝑧 ↔ 𝑣𝑥𝑧)) | |
| 4 | 3 | abbidv 2797 | . . . . . . . . 9 ⊢ (𝑢 = 𝑣 → {𝑧 ∣ 𝑢𝑥𝑧} = {𝑧 ∣ 𝑣𝑥𝑧}) |
| 5 | 2, 4 | eqtrid 2778 | . . . . . . . 8 ⊢ (𝑢 = 𝑣 → {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑣𝑥𝑧}) |
| 6 | 5 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤}) = (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
| 7 | 6 | cbvmptv 5195 | . . . . . 6 ⊢ (𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
| 8 | rdgeq1 8330 | . . . . . 6 ⊢ ((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) |
| 10 | 9 | reseq1i 5924 | . . . 4 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω) |
| 11 | 10 | axdclem2 10408 | . . 3 ⊢ (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
| 12 | 11 | exlimiv 1931 | . 2 ⊢ (∃𝑦∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
| 13 | 12 | imp 406 | 1 ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 ↾ cres 5618 suc csuc 6308 ‘cfv 6481 ωcom 7796 reccrdg 8328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-ac2 10351 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-ac 10004 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |