MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc Structured version   Visualization version   GIF version

Theorem axdc 10474
Description: This theorem derives ax-dc 10399 using ax-ac 10412 and ax-inf 9591. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
axdc ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Distinct variable group:   𝑓,𝑛,𝑥,𝑦,𝑧

Proof of Theorem axdc
Dummy variables 𝑣 𝑔 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5111 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑢𝑥𝑤𝑢𝑥𝑧))
21cbvabv 2799 . . . . . . . . 9 {𝑤𝑢𝑥𝑤} = {𝑧𝑢𝑥𝑧}
3 breq1 5110 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢𝑥𝑧𝑣𝑥𝑧))
43abbidv 2795 . . . . . . . . 9 (𝑢 = 𝑣 → {𝑧𝑢𝑥𝑧} = {𝑧𝑣𝑥𝑧})
52, 4eqtrid 2776 . . . . . . . 8 (𝑢 = 𝑣 → {𝑤𝑢𝑥𝑤} = {𝑧𝑣𝑥𝑧})
65fveq2d 6862 . . . . . . 7 (𝑢 = 𝑣 → (𝑔‘{𝑤𝑢𝑥𝑤}) = (𝑔‘{𝑧𝑣𝑥𝑧}))
76cbvmptv 5211 . . . . . 6 (𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧}))
8 rdgeq1 8379 . . . . . 6 ((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦))
97, 8ax-mp 5 . . . . 5 rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦)
109reseq1i 5946 . . . 4 (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦) ↾ ω)
1110axdclem2 10473 . . 3 (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
1211exlimiv 1930 . 2 (∃𝑦𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
1312imp 406 1 ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  {cab 2707  wral 3044  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  suc csuc 6334  cfv 6511  ωcom 7842  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-ac 10069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator