MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc Structured version   Visualization version   GIF version

Theorem axdc 10515
Description: This theorem derives ax-dc 10440 using ax-ac 10453 and ax-inf 9632. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
axdc ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Distinct variable group:   𝑓,𝑛,𝑥,𝑦,𝑧

Proof of Theorem axdc
Dummy variables 𝑣 𝑔 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑢𝑥𝑤𝑢𝑥𝑧))
21cbvabv 2805 . . . . . . . 8 {𝑤𝑢𝑥𝑤} = {𝑧𝑢𝑥𝑧}
3 breq1 5151 . . . . . . . . 9 (𝑢 = 𝑣 → (𝑢𝑥𝑧𝑣𝑥𝑧))
43abbidv 2801 . . . . . . . 8 (𝑢 = 𝑣 → {𝑧𝑢𝑥𝑧} = {𝑧𝑣𝑥𝑧})
52, 4eqtrid 2784 . . . . . . 7 (𝑢 = 𝑣 → {𝑤𝑢𝑥𝑤} = {𝑧𝑣𝑥𝑧})
65fveq2d 6895 . . . . . 6 (𝑢 = 𝑣 → (𝑔‘{𝑤𝑢𝑥𝑤}) = (𝑔‘{𝑧𝑣𝑥𝑧}))
76cbvmptv 5261 . . . . 5 (𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧}))
8 rdgeq1 8410 . . . . 5 ((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦))
9 reseq1 5975 . . . . 5 (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦) → (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦) ↾ ω))
107, 8, 9mp2b 10 . . . 4 (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧𝑣𝑥𝑧})), 𝑦) ↾ ω)
1110axdclem2 10514 . . 3 (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
1211exlimiv 1933 . 2 (∃𝑦𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
1312imp 407 1 ((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  {cab 2709  wral 3061  Vcvv 3474  wss 3948   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cres 5678  suc csuc 6366  cfv 6543  ωcom 7854  reccrdg 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-ac2 10457
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-ac 10110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator