![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc | Structured version Visualization version GIF version |
Description: This theorem derives ax-dc 10440 using ax-ac 10453 and ax-inf 9632. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑢𝑥𝑤 ↔ 𝑢𝑥𝑧)) | |
2 | 1 | cbvabv 2805 | . . . . . . . 8 ⊢ {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑢𝑥𝑧} |
3 | breq1 5151 | . . . . . . . . 9 ⊢ (𝑢 = 𝑣 → (𝑢𝑥𝑧 ↔ 𝑣𝑥𝑧)) | |
4 | 3 | abbidv 2801 | . . . . . . . 8 ⊢ (𝑢 = 𝑣 → {𝑧 ∣ 𝑢𝑥𝑧} = {𝑧 ∣ 𝑣𝑥𝑧}) |
5 | 2, 4 | eqtrid 2784 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑣𝑥𝑧}) |
6 | 5 | fveq2d 6895 | . . . . . 6 ⊢ (𝑢 = 𝑣 → (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤}) = (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
7 | 6 | cbvmptv 5261 | . . . . 5 ⊢ (𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
8 | rdgeq1 8410 | . . . . 5 ⊢ ((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦)) | |
9 | reseq1 5975 | . . . . 5 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) → (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω)) | |
10 | 7, 8, 9 | mp2b 10 | . . . 4 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω) |
11 | 10 | axdclem2 10514 | . . 3 ⊢ (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
12 | 11 | exlimiv 1933 | . 2 ⊢ (∃𝑦∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
13 | 12 | imp 407 | 1 ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 {cab 2709 ∀wral 3061 Vcvv 3474 ⊆ wss 3948 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5676 ran crn 5677 ↾ cres 5678 suc csuc 6366 ‘cfv 6543 ωcom 7854 reccrdg 8408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-ac2 10457 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-ac 10110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |