Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-pre-lttri | Structured version Visualization version GIF version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, justified by Theorem axpre-lttri 10852. Note: The more general version for extended reals is axlttri 10977. Normally new proofs would use xrlttri 12802. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
ax-pre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 10801 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | cltrr 10806 | . . . 4 class <ℝ | |
8 | 1, 4, 7 | wbr 5070 | . . 3 wff 𝐴 <ℝ 𝐵 |
9 | 1, 4 | wceq 1539 | . . . . 5 wff 𝐴 = 𝐵 |
10 | 4, 1, 7 | wbr 5070 | . . . . 5 wff 𝐵 <ℝ 𝐴 |
11 | 9, 10 | wo 843 | . . . 4 wff (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴) |
12 | 11 | wn 3 | . . 3 wff ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴) |
13 | 8, 12 | wb 205 | . 2 wff (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)) |
14 | 6, 13 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Colors of variables: wff setvar class |
This axiom is referenced by: axlttri 10977 |
Copyright terms: Public domain | W3C validator |