| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > ax-pre-lttri | Structured version Visualization version GIF version | ||
| Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, justified by Theorem axpre-lttri 11188. Note: The more general version for extended reals is axlttri 11315. Normally new proofs would use xrlttri 13164. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| ax-pre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cr 11137 | . . . 4 class ℝ | |
| 3 | 1, 2 | wcel 2107 | . . 3 wff 𝐴 ∈ ℝ | 
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2107 | . . 3 wff 𝐵 ∈ ℝ | 
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) | 
| 7 | cltrr 11142 | . . . 4 class <ℝ | |
| 8 | 1, 4, 7 | wbr 5125 | . . 3 wff 𝐴 <ℝ 𝐵 | 
| 9 | 1, 4 | wceq 1539 | . . . . 5 wff 𝐴 = 𝐵 | 
| 10 | 4, 1, 7 | wbr 5125 | . . . . 5 wff 𝐵 <ℝ 𝐴 | 
| 11 | 9, 10 | wo 847 | . . . 4 wff (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴) | 
| 12 | 11 | wn 3 | . . 3 wff ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴) | 
| 13 | 8, 12 | wb 206 | . 2 wff (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)) | 
| 14 | 6, 13 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | 
| Colors of variables: wff setvar class | 
| This axiom is referenced by: axlttri 11315 | 
| Copyright terms: Public domain | W3C validator |