| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlttri | Structured version Visualization version GIF version | ||
| Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri 11203 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| axlttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-lttri 11203 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | |
| 2 | ltxrlt 11305 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) | |
| 3 | ltxrlt 11305 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ 𝐵 <ℝ 𝐴)) |
| 5 | 4 | orbi2d 915 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 6 | 5 | notbid 318 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 7 | 1, 2, 6 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 <ℝ cltrr 11133 < clt 11269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttri 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: ltso 11315 leloe 11321 ltnsym 11333 ltadd2 11339 lttrid 11373 ltord1 11763 recgt0 12087 recgt0ii 12148 arch 12498 xrlttri 13155 subgmulg 19123 cosord 26492 logdivlt 26582 aks6d1c5lem1 42149 metakunt1 42218 digexp 48587 |
| Copyright terms: Public domain | W3C validator |