MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-lttri Structured version   Visualization version   GIF version

Theorem axpre-lttri 11078
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11205. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11102. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttri ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))

Proof of Theorem axpre-lttri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11044 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11044 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq1 5098 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
4 eqeq1 2733 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩))
5 breq2 5099 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
64, 5orbi12d 918 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
76notbid 318 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
83, 7bibi12d 345 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴))))
9 breq2 5099 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
10 eqeq2 2741 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵))
11 breq1 5098 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
1210, 11orbi12d 918 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 = 𝐵𝐵 < 𝐴)))
1312notbid 318 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
149, 13bibi12d 345 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)) ↔ (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴))))
15 ltsosr 11007 . . . 4 <R Or R
16 sotric 5561 . . . 4 (( <R Or R ∧ (𝑥R𝑦R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦𝑦 <R 𝑥)))
1715, 16mpan 690 . . 3 ((𝑥R𝑦R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦𝑦 <R 𝑥)))
18 ltresr 11053 . . 3 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
19 vex 3442 . . . . . 6 𝑥 ∈ V
2019eqresr 11050 . . . . 5 (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦)
21 ltresr 11053 . . . . 5 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
2220, 21orbi12i 914 . . . 4 ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 = 𝑦𝑦 <R 𝑥))
2322notbii 320 . . 3 (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝑥 = 𝑦𝑦 <R 𝑥))
2417, 18, 233bitr4g 314 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)))
251, 2, 8, 14, 242gencl 3481 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095   Or wor 5530  Rcnr 10778  0Rc0r 10779   <R cltr 10784  cr 11027   < cltrr 11032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-ni 10785  df-pli 10786  df-mi 10787  df-lti 10788  df-plpq 10821  df-mpq 10822  df-ltpq 10823  df-enq 10824  df-nq 10825  df-erq 10826  df-plq 10827  df-mq 10828  df-1nq 10829  df-rq 10830  df-ltnq 10831  df-np 10894  df-1p 10895  df-plp 10896  df-ltp 10898  df-enr 10968  df-nr 10969  df-ltr 10972  df-0r 10973  df-r 11038  df-lt 11041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator