![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttri | Structured version Visualization version GIF version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11289. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11186. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11128 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 11128 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | breq1 5144 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
4 | eqeq1 2730 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩)) | |
5 | breq2 5145 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ <ℝ 𝐴)) | |
6 | 4, 5 | orbi12d 915 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
7 | 6 | notbid 318 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
8 | 3, 7 | bibi12d 345 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩)) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴)))) |
9 | breq2 5145 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
10 | eqeq2 2738 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵)) | |
11 | breq1 5144 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
12 | 10, 11 | orbi12d 915 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | 12 | notbid 318 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
14 | 9, 13 | bibi12d 345 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴)) ↔ (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)))) |
15 | ltsosr 11091 | . . . 4 ⊢ <R Or R | |
16 | sotric 5609 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) | |
17 | 15, 16 | mpan 687 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) |
18 | ltresr 11137 | . . 3 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
19 | vex 3472 | . . . . . 6 ⊢ 𝑥 ∈ V | |
20 | 19 | eqresr 11134 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦) |
21 | ltresr 11137 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ 𝑦 <R 𝑥) | |
22 | 20, 21 | orbi12i 911 | . . . 4 ⊢ ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
23 | 22 | notbii 320 | . . 3 ⊢ (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
24 | 17, 18, 23 | 3bitr4g 314 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩))) |
25 | 1, 2, 8, 14, 24 | 2gencl 3511 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 class class class wbr 5141 Or wor 5580 Rcnr 10862 0Rc0r 10863 <R cltr 10868 ℝcr 11111 <ℝ cltrr 11116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-omul 8472 df-er 8705 df-ec 8707 df-qs 8711 df-ni 10869 df-pli 10870 df-mi 10871 df-lti 10872 df-plpq 10905 df-mpq 10906 df-ltpq 10907 df-enq 10908 df-nq 10909 df-erq 10910 df-plq 10911 df-mq 10912 df-1nq 10913 df-rq 10914 df-ltnq 10915 df-np 10978 df-1p 10979 df-plp 10980 df-ltp 10982 df-enr 11052 df-nr 11053 df-ltr 11056 df-0r 11057 df-r 11122 df-lt 11125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |