MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-lttri Structured version   Visualization version   GIF version

Theorem axpre-lttri 11184
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11311. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11208. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttri ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))

Proof of Theorem axpre-lttri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11150 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11150 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq1 5127 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
4 eqeq1 2740 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩))
5 breq2 5128 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
64, 5orbi12d 918 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
76notbid 318 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
83, 7bibi12d 345 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴))))
9 breq2 5128 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
10 eqeq2 2748 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵))
11 breq1 5127 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
1210, 11orbi12d 918 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 = 𝐵𝐵 < 𝐴)))
1312notbid 318 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
149, 13bibi12d 345 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)) ↔ (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴))))
15 ltsosr 11113 . . . 4 <R Or R
16 sotric 5596 . . . 4 (( <R Or R ∧ (𝑥R𝑦R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦𝑦 <R 𝑥)))
1715, 16mpan 690 . . 3 ((𝑥R𝑦R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦𝑦 <R 𝑥)))
18 ltresr 11159 . . 3 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
19 vex 3468 . . . . . 6 𝑥 ∈ V
2019eqresr 11156 . . . . 5 (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦)
21 ltresr 11159 . . . . 5 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
2220, 21orbi12i 914 . . . 4 ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 = 𝑦𝑦 <R 𝑥))
2322notbii 320 . . 3 (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝑥 = 𝑦𝑦 <R 𝑥))
2417, 18, 233bitr4g 314 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)))
251, 2, 8, 14, 242gencl 3508 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cop 4612   class class class wbr 5124   Or wor 5565  Rcnr 10884  0Rc0r 10885   <R cltr 10890  cr 11133   < cltrr 11138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-1p 11001  df-plp 11002  df-ltp 11004  df-enr 11074  df-nr 11075  df-ltr 11078  df-0r 11079  df-r 11144  df-lt 11147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator