| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpre-lttri | Structured version Visualization version GIF version | ||
| Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11191. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11087. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 11029 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 11029 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | breq1 5096 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 4 | eqeq1 2737 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝐴 = 〈𝑦, 0R〉)) | |
| 5 | breq2 5097 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 〈𝑦, 0R〉 <ℝ 𝐴)) | |
| 6 | 4, 5 | orbi12d 918 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
| 7 | 6 | notbid 318 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
| 8 | 3, 7 | bibi12d 345 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ ¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉)) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴)))) |
| 9 | breq2 5097 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 10 | eqeq2 2745 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 = 〈𝑦, 0R〉 ↔ 𝐴 = 𝐵)) | |
| 11 | breq1 5096 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
| 12 | 10, 11 | orbi12d 918 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 13 | 12 | notbid 318 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 14 | 9, 13 | bibi12d 345 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴)) ↔ (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)))) |
| 15 | ltsosr 10992 | . . . 4 ⊢ <R Or R | |
| 16 | sotric 5557 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) | |
| 17 | 15, 16 | mpan 690 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) |
| 18 | ltresr 11038 | . . 3 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 19 | vex 3441 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 20 | 19 | eqresr 11035 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝑥 = 𝑦) |
| 21 | ltresr 11038 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑦 <R 𝑥) | |
| 22 | 20, 21 | orbi12i 914 | . . . 4 ⊢ ((〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
| 23 | 22 | notbii 320 | . . 3 ⊢ (¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
| 24 | 17, 18, 23 | 3bitr4g 314 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ ¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉))) |
| 25 | 1, 2, 8, 14, 24 | 2gencl 3480 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 Or wor 5526 Rcnr 10763 0Rc0r 10764 <R cltr 10769 ℝcr 11012 <ℝ cltrr 11017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-1p 10880 df-plp 10881 df-ltp 10883 df-enr 10953 df-nr 10954 df-ltr 10957 df-0r 10958 df-r 11023 df-lt 11026 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |