![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttri | Structured version Visualization version GIF version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11226. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11125. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11067 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 11067 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | breq1 5108 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
4 | eqeq1 2740 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩)) | |
5 | breq2 5109 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ <ℝ 𝐴)) | |
6 | 4, 5 | orbi12d 917 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
7 | 6 | notbid 317 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
8 | 3, 7 | bibi12d 345 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩)) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴)))) |
9 | breq2 5109 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
10 | eqeq2 2748 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵)) | |
11 | breq1 5108 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
12 | 10, 11 | orbi12d 917 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | 12 | notbid 317 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
14 | 9, 13 | bibi12d 345 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴)) ↔ (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)))) |
15 | ltsosr 11030 | . . . 4 ⊢ <R Or R | |
16 | sotric 5573 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) | |
17 | 15, 16 | mpan 688 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) |
18 | ltresr 11076 | . . 3 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
19 | vex 3449 | . . . . . 6 ⊢ 𝑥 ∈ V | |
20 | 19 | eqresr 11073 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦) |
21 | ltresr 11076 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ 𝑦 <R 𝑥) | |
22 | 20, 21 | orbi12i 913 | . . . 4 ⊢ ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
23 | 22 | notbii 319 | . . 3 ⊢ (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
24 | 17, 18, 23 | 3bitr4g 313 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩))) |
25 | 1, 2, 8, 14, 24 | 2gencl 3486 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ⟨cop 4592 class class class wbr 5105 Or wor 5544 Rcnr 10801 0Rc0r 10802 <R cltr 10807 ℝcr 11050 <ℝ cltrr 11055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-oadd 8416 df-omul 8417 df-er 8648 df-ec 8650 df-qs 8654 df-ni 10808 df-pli 10809 df-mi 10810 df-lti 10811 df-plpq 10844 df-mpq 10845 df-ltpq 10846 df-enq 10847 df-nq 10848 df-erq 10849 df-plq 10850 df-mq 10851 df-1nq 10852 df-rq 10853 df-ltnq 10854 df-np 10917 df-1p 10918 df-plp 10919 df-ltp 10921 df-enr 10991 df-nr 10992 df-ltr 10995 df-0r 10996 df-r 11061 df-lt 11064 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |