![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttri | Structured version Visualization version GIF version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11361. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11258. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11200 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 11200 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | breq1 5169 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
4 | eqeq1 2744 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝐴 = 〈𝑦, 0R〉)) | |
5 | breq2 5170 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 〈𝑦, 0R〉 <ℝ 𝐴)) | |
6 | 4, 5 | orbi12d 917 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
7 | 6 | notbid 318 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
8 | 3, 7 | bibi12d 345 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ ¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉)) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴)))) |
9 | breq2 5170 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
10 | eqeq2 2752 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 = 〈𝑦, 0R〉 ↔ 𝐴 = 𝐵)) | |
11 | breq1 5169 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
12 | 10, 11 | orbi12d 917 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | 12 | notbid 318 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
14 | 9, 13 | bibi12d 345 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴)) ↔ (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)))) |
15 | ltsosr 11163 | . . . 4 ⊢ <R Or R | |
16 | sotric 5637 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) | |
17 | 15, 16 | mpan 689 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) |
18 | ltresr 11209 | . . 3 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
19 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
20 | 19 | eqresr 11206 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝑥 = 𝑦) |
21 | ltresr 11209 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑦 <R 𝑥) | |
22 | 20, 21 | orbi12i 913 | . . . 4 ⊢ ((〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
23 | 22 | notbii 320 | . . 3 ⊢ (¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
24 | 17, 18, 23 | 3bitr4g 314 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ ¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉))) |
25 | 1, 2, 8, 14, 24 | 2gencl 3534 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 Or wor 5606 Rcnr 10934 0Rc0r 10935 <R cltr 10940 ℝcr 11183 <ℝ cltrr 11188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-qs 8769 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-mpq 10978 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-mq 10984 df-1nq 10985 df-rq 10986 df-ltnq 10987 df-np 11050 df-1p 11051 df-plp 11052 df-ltp 11054 df-enr 11124 df-nr 11125 df-ltr 11128 df-0r 11129 df-r 11194 df-lt 11197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |