![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttri | Structured version Visualization version GIF version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 10561. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 10460. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 10402 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 10402 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | breq1 4967 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
4 | eqeq1 2798 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝐴 = 〈𝑦, 0R〉)) | |
5 | breq2 4968 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 〈𝑦, 0R〉 <ℝ 𝐴)) | |
6 | 4, 5 | orbi12d 913 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
7 | 6 | notbid 319 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
8 | 3, 7 | bibi12d 347 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ ¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉)) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴)))) |
9 | breq2 4968 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
10 | eqeq2 2805 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 = 〈𝑦, 0R〉 ↔ 𝐴 = 𝐵)) | |
11 | breq1 4967 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
12 | 10, 11 | orbi12d 913 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | 12 | notbid 319 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
14 | 9, 13 | bibi12d 347 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ↔ ¬ (𝐴 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴)) ↔ (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)))) |
15 | ltsosr 10365 | . . . 4 ⊢ <R Or R | |
16 | sotric 5392 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) | |
17 | 15, 16 | mpan 686 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) |
18 | ltresr 10411 | . . 3 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
19 | vex 3439 | . . . . . 6 ⊢ 𝑥 ∈ V | |
20 | 19 | eqresr 10408 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝑥 = 𝑦) |
21 | ltresr 10411 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑦 <R 𝑥) | |
22 | 20, 21 | orbi12i 909 | . . . 4 ⊢ ((〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
23 | 22 | notbii 321 | . . 3 ⊢ (¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
24 | 17, 18, 23 | 3bitr4g 315 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ ¬ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉))) |
25 | 1, 2, 8, 14, 24 | 2gencl 3477 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1522 ∈ wcel 2080 〈cop 4480 class class class wbr 4964 Or wor 5364 Rcnr 10136 0Rc0r 10137 <R cltr 10142 ℝcr 10385 <ℝ cltrr 10390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-inf2 8953 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-oadd 7960 df-omul 7961 df-er 8142 df-ec 8144 df-qs 8148 df-ni 10143 df-pli 10144 df-mi 10145 df-lti 10146 df-plpq 10179 df-mpq 10180 df-ltpq 10181 df-enq 10182 df-nq 10183 df-erq 10184 df-plq 10185 df-mq 10186 df-1nq 10187 df-rq 10188 df-ltnq 10189 df-np 10252 df-1p 10253 df-plp 10254 df-ltp 10256 df-enr 10326 df-nr 10327 df-ltr 10330 df-0r 10331 df-r 10396 df-lt 10399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |