![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttri | Structured version Visualization version GIF version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11313. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11210. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttri | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11152 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 11152 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | breq1 5146 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
4 | eqeq1 2729 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩)) | |
5 | breq2 5147 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ <ℝ 𝐴)) | |
6 | 4, 5 | orbi12d 916 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
7 | 6 | notbid 317 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
8 | 3, 7 | bibi12d 344 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩)) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴)))) |
9 | breq2 5147 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
10 | eqeq2 2737 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵)) | |
11 | breq1 5146 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
12 | 10, 11 | orbi12d 916 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | 12 | notbid 317 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
14 | 9, 13 | bibi12d 344 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (𝐴 = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴)) ↔ (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴)))) |
15 | ltsosr 11115 | . . . 4 ⊢ <R Or R | |
16 | sotric 5612 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) | |
17 | 15, 16 | mpan 688 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 <R 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥))) |
18 | ltresr 11161 | . . 3 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
19 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
20 | 19 | eqresr 11158 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦) |
21 | ltresr 11161 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ 𝑦 <R 𝑥) | |
22 | 20, 21 | orbi12i 912 | . . . 4 ⊢ ((⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
23 | 22 | notbii 319 | . . 3 ⊢ (¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 <R 𝑥)) |
24 | 17, 18, 23 | 3bitr4g 313 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ ¬ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩))) |
25 | 1, 2, 8, 14, 24 | 2gencl 3507 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ⟨cop 4630 class class class wbr 5143 Or wor 5583 Rcnr 10886 0Rc0r 10887 <R cltr 10892 ℝcr 11135 <ℝ cltrr 11140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-omul 8488 df-er 8721 df-ec 8723 df-qs 8727 df-ni 10893 df-pli 10894 df-mi 10895 df-lti 10896 df-plpq 10929 df-mpq 10930 df-ltpq 10931 df-enq 10932 df-nq 10933 df-erq 10934 df-plq 10935 df-mq 10936 df-1nq 10937 df-rq 10938 df-ltnq 10939 df-np 11002 df-1p 11003 df-plp 11004 df-ltp 11006 df-enr 11076 df-nr 11077 df-ltr 11080 df-0r 11081 df-r 11146 df-lt 11149 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |