Proof of Theorem xrlttri
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xrltnr 13162 | . . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 < 𝐴) | 
| 2 | 1 | adantr 480 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐴) | 
| 3 |  | breq2 5146 | . . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | 
| 4 | 3 | adantl 481 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = 𝐵) → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | 
| 5 | 2, 4 | mtbid 324 | . . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵) | 
| 6 | 5 | ex 412 | . . . . 5
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) | 
| 7 | 6 | adantr 480 | . . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) | 
| 8 |  | xrltnsym 13180 | . . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) | 
| 9 | 8 | ancoms 458 | . . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) | 
| 10 | 7, 9 | jaod 859 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → ¬ 𝐴 < 𝐵)) | 
| 11 |  | elxr 13159 | . . . 4
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) | 
| 12 |  | elxr 13159 | . . . 4
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) | 
| 13 |  | axlttri 11333 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 14 | 13 | biimprd 248 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
(𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 < 𝐵)) | 
| 15 | 14 | con1d 145 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 16 |  | ltpnf 13163 | . . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | 
| 17 | 16 | adantr 480 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞) | 
| 18 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 𝐴 < +∞)) | 
| 19 | 18 | adantl 481 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 𝐴 < +∞)) | 
| 20 | 17, 19 | mpbird 257 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) | 
| 21 | 20 | pm2.24d 151 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 22 |  | mnflt 13166 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → -∞
< 𝐴) | 
| 23 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞
< 𝐴) | 
| 24 |  | breq1 5145 | . . . . . . . . . 10
⊢ (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴)) | 
| 25 | 24 | adantl 481 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 < 𝐴 ↔ -∞ < 𝐴)) | 
| 26 | 23, 25 | mpbird 257 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 < 𝐴) | 
| 27 | 26 | olcd 874 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | 
| 28 | 27 | a1d 25 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 29 | 15, 21, 28 | 3jaodan 1432 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 30 |  | ltpnf 13163 | . . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | 
| 31 | 30 | adantl 481 | . . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞) | 
| 32 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝐴 = +∞ → (𝐵 < 𝐴 ↔ 𝐵 < +∞)) | 
| 33 | 32 | adantr 480 | . . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ 𝐵 < +∞)) | 
| 34 | 31, 33 | mpbird 257 | . . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < 𝐴) | 
| 35 | 34 | olcd 874 | . . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | 
| 36 | 35 | a1d 25 | . . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 37 |  | eqtr3 2762 | . . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐴 = 𝐵) | 
| 38 | 37 | orcd 873 | . . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | 
| 39 | 38 | a1d 25 | . . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 40 |  | mnfltpnf 13169 | . . . . . . . . . 10
⊢ -∞
< +∞ | 
| 41 |  | breq12 5147 | . . . . . . . . . 10
⊢ ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ <
+∞)) | 
| 42 | 40, 41 | mpbiri 258 | . . . . . . . . 9
⊢ ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴) | 
| 43 | 42 | ancoms 458 | . . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 < 𝐴) | 
| 44 | 43 | olcd 874 | . . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | 
| 45 | 44 | a1d 25 | . . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 46 | 36, 39, 45 | 3jaodan 1432 | . . . . 5
⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 47 |  | mnflt 13166 | . . . . . . . . 9
⊢ (𝐵 ∈ ℝ → -∞
< 𝐵) | 
| 48 | 47 | adantl 481 | . . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞
< 𝐵) | 
| 49 |  | breq1 5145 | . . . . . . . . 9
⊢ (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵)) | 
| 50 | 49 | adantr 480 | . . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -∞ < 𝐵)) | 
| 51 | 48, 50 | mpbird 257 | . . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵) | 
| 52 | 51 | pm2.24d 151 | . . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 53 |  | breq12 5147 | . . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ <
+∞)) | 
| 54 | 40, 53 | mpbiri 258 | . . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) | 
| 55 | 54 | pm2.24d 151 | . . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 56 |  | eqtr3 2762 | . . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵) | 
| 57 | 56 | orcd 873 | . . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | 
| 58 | 57 | a1d 25 | . . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 59 | 52, 55, 58 | 3jaodan 1432 | . . . . 5
⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 60 | 29, 46, 59 | 3jaoian 1431 | . . . 4
⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 61 | 11, 12, 60 | syl2anb 598 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 62 | 10, 61 | impbid 212 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ¬ 𝐴 < 𝐵)) | 
| 63 | 62 | con2bid 354 | 1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |