MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttri Structured version   Visualization version   GIF version

Theorem xrlttri 12386
Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 10464 or axlttri 10565. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlttri ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))

Proof of Theorem xrlttri
StepHypRef Expression
1 xrltnr 12368 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
21adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐴)
3 breq2 4972 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
43adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
52, 4mtbid 325 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
65ex 413 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
76adantr 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
8 xrltnsym 12384 . . . . 5 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
98ancoms 459 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
107, 9jaod 854 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) → ¬ 𝐴 < 𝐵))
11 elxr 12365 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
12 elxr 12365 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
13 axlttri 10565 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
1413biimprd 249 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 = 𝐵𝐵 < 𝐴) → 𝐴 < 𝐵))
1514con1d 147 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
16 ltpnf 12369 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 < +∞)
1716adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞)
18 breq2 4972 . . . . . . . . 9 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
1918adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵𝐴 < +∞))
2017, 19mpbird 258 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
2120pm2.24d 154 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
22 mnflt 12372 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < 𝐴)
2322adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ < 𝐴)
24 breq1 4971 . . . . . . . . . 10 (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2524adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2623, 25mpbird 258 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
2726olcd 871 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
2827a1d 25 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
2915, 21, 283jaodan 1423 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
30 ltpnf 12369 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 < +∞)
3130adantl 482 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞)
32 breq2 4972 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 < 𝐴𝐵 < +∞))
3332adantr 481 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < +∞))
3431, 33mpbird 258 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < 𝐴)
3534olcd 871 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐵 < 𝐴))
3635a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
37 eqtr3 2820 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐴 = 𝐵)
3837orcd 870 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵𝐵 < 𝐴))
3938a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
40 mnfltpnf 12375 . . . . . . . . . 10 -∞ < +∞
41 breq12 4973 . . . . . . . . . 10 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ < +∞))
4240, 41mpbiri 259 . . . . . . . . 9 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
4342ancoms 459 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
4443olcd 871 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
4544a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
4636, 39, 453jaodan 1423 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
47 mnflt 12372 . . . . . . . . 9 (𝐵 ∈ ℝ → -∞ < 𝐵)
4847adantl 482 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵)
49 breq1 4971 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5049adantr 481 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5148, 50mpbird 258 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵)
5251pm2.24d 154 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
53 breq12 4973 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
5440, 53mpbiri 259 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
5554pm2.24d 154 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
56 eqtr3 2820 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
5756orcd 870 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
5857a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
5952, 55, 583jaodan 1423 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6029, 46, 593jaoian 1422 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6111, 12, 60syl2anb 597 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6210, 61impbid 213 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) ↔ ¬ 𝐴 < 𝐵))
6362con2bid 356 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3o 1079   = wceq 1525  wcel 2083   class class class wbr 4968  cr 10389  +∞cpnf 10525  -∞cmnf 10526  *cxr 10527   < clt 10528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-pre-lttri 10464  ax-pre-lttrn 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533
This theorem is referenced by:  xrltso  12388  xrleloe  12391  xrltlen  12393
  Copyright terms: Public domain W3C validator