Proof of Theorem xrlttri
Step | Hyp | Ref
| Expression |
1 | | xrltnr 12784 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 < 𝐴) |
2 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐴) |
3 | | breq2 5074 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) |
4 | 3 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = 𝐵) → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) |
5 | 2, 4 | mtbid 323 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵) |
6 | 5 | ex 412 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) |
8 | | xrltnsym 12800 |
. . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) |
9 | 8 | ancoms 458 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) |
10 | 7, 9 | jaod 855 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → ¬ 𝐴 < 𝐵)) |
11 | | elxr 12781 |
. . . 4
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
12 | | elxr 12781 |
. . . 4
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
13 | | axlttri 10977 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
14 | 13 | biimprd 247 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
(𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 < 𝐵)) |
15 | 14 | con1d 145 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
16 | | ltpnf 12785 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞) |
18 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 𝐴 < +∞)) |
19 | 18 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 𝐴 < +∞)) |
20 | 17, 19 | mpbird 256 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) |
21 | 20 | pm2.24d 151 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
22 | | mnflt 12788 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → -∞
< 𝐴) |
23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞
< 𝐴) |
24 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴)) |
25 | 24 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 < 𝐴 ↔ -∞ < 𝐴)) |
26 | 23, 25 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 < 𝐴) |
27 | 26 | olcd 870 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
28 | 27 | a1d 25 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
29 | 15, 21, 28 | 3jaodan 1428 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
30 | | ltpnf 12785 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) |
31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞) |
32 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝐴 = +∞ → (𝐵 < 𝐴 ↔ 𝐵 < +∞)) |
33 | 32 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ 𝐵 < +∞)) |
34 | 31, 33 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < 𝐴) |
35 | 34 | olcd 870 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
36 | 35 | a1d 25 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
37 | | eqtr3 2764 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐴 = 𝐵) |
38 | 37 | orcd 869 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
39 | 38 | a1d 25 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
40 | | mnfltpnf 12791 |
. . . . . . . . . 10
⊢ -∞
< +∞ |
41 | | breq12 5075 |
. . . . . . . . . 10
⊢ ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ <
+∞)) |
42 | 40, 41 | mpbiri 257 |
. . . . . . . . 9
⊢ ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴) |
43 | 42 | ancoms 458 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 < 𝐴) |
44 | 43 | olcd 870 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
45 | 44 | a1d 25 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
46 | 36, 39, 45 | 3jaodan 1428 |
. . . . 5
⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
47 | | mnflt 12788 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → -∞
< 𝐵) |
48 | 47 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞
< 𝐵) |
49 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵)) |
50 | 49 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -∞ < 𝐵)) |
51 | 48, 50 | mpbird 256 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵) |
52 | 51 | pm2.24d 151 |
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
53 | | breq12 5075 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ <
+∞)) |
54 | 40, 53 | mpbiri 257 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) |
55 | 54 | pm2.24d 151 |
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
56 | | eqtr3 2764 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵) |
57 | 56 | orcd 869 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
58 | 57 | a1d 25 |
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
59 | 52, 55, 58 | 3jaodan 1428 |
. . . . 5
⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
60 | 29, 46, 59 | 3jaoian 1427 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬
𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
61 | 11, 12, 60 | syl2anb 597 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
62 | 10, 61 | impbid 211 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ¬ 𝐴 < 𝐵)) |
63 | 62 | con2bid 354 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |