MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttri Structured version   Visualization version   GIF version

Theorem xrlttri 12526
Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 10605 or axlttri 10706. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlttri ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))

Proof of Theorem xrlttri
StepHypRef Expression
1 xrltnr 12508 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
21adantr 483 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐴)
3 breq2 5062 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
43adantl 484 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
52, 4mtbid 326 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
65ex 415 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
76adantr 483 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
8 xrltnsym 12524 . . . . 5 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
98ancoms 461 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
107, 9jaod 855 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) → ¬ 𝐴 < 𝐵))
11 elxr 12505 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
12 elxr 12505 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
13 axlttri 10706 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
1413biimprd 250 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 = 𝐵𝐵 < 𝐴) → 𝐴 < 𝐵))
1514con1d 147 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
16 ltpnf 12509 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 < +∞)
1716adantr 483 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞)
18 breq2 5062 . . . . . . . . 9 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
1918adantl 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵𝐴 < +∞))
2017, 19mpbird 259 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
2120pm2.24d 154 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
22 mnflt 12512 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < 𝐴)
2322adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ < 𝐴)
24 breq1 5061 . . . . . . . . . 10 (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2524adantl 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2623, 25mpbird 259 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
2726olcd 870 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
2827a1d 25 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
2915, 21, 283jaodan 1426 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
30 ltpnf 12509 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 < +∞)
3130adantl 484 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞)
32 breq2 5062 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 < 𝐴𝐵 < +∞))
3332adantr 483 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < +∞))
3431, 33mpbird 259 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < 𝐴)
3534olcd 870 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐵 < 𝐴))
3635a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
37 eqtr3 2843 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐴 = 𝐵)
3837orcd 869 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵𝐵 < 𝐴))
3938a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
40 mnfltpnf 12515 . . . . . . . . . 10 -∞ < +∞
41 breq12 5063 . . . . . . . . . 10 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ < +∞))
4240, 41mpbiri 260 . . . . . . . . 9 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
4342ancoms 461 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
4443olcd 870 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
4544a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
4636, 39, 453jaodan 1426 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
47 mnflt 12512 . . . . . . . . 9 (𝐵 ∈ ℝ → -∞ < 𝐵)
4847adantl 484 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵)
49 breq1 5061 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5049adantr 483 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5148, 50mpbird 259 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵)
5251pm2.24d 154 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
53 breq12 5063 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
5440, 53mpbiri 260 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
5554pm2.24d 154 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
56 eqtr3 2843 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
5756orcd 869 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
5857a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
5952, 55, 583jaodan 1426 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6029, 46, 593jaoian 1425 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6111, 12, 60syl2anb 599 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6210, 61impbid 214 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) ↔ ¬ 𝐴 < 𝐵))
6362con2bid 357 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082   = wceq 1533  wcel 2110   class class class wbr 5058  cr 10530  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674
This theorem is referenced by:  xrltso  12528  xrleloe  12531  xrltlen  12533
  Copyright terms: Public domain W3C validator