MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttri Structured version   Visualization version   GIF version

Theorem xrlttri 13058
Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 11125 or axlttri 11226. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlttri ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))

Proof of Theorem xrlttri
StepHypRef Expression
1 xrltnr 13040 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
21adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐴)
3 breq2 5109 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
43adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
52, 4mtbid 323 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
65ex 413 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
76adantr 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
8 xrltnsym 13056 . . . . 5 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
98ancoms 459 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
107, 9jaod 857 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) → ¬ 𝐴 < 𝐵))
11 elxr 13037 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
12 elxr 13037 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
13 axlttri 11226 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
1413biimprd 247 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 = 𝐵𝐵 < 𝐴) → 𝐴 < 𝐵))
1514con1d 145 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
16 ltpnf 13041 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 < +∞)
1716adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞)
18 breq2 5109 . . . . . . . . 9 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
1918adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵𝐴 < +∞))
2017, 19mpbird 256 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
2120pm2.24d 151 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
22 mnflt 13044 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < 𝐴)
2322adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ < 𝐴)
24 breq1 5108 . . . . . . . . . 10 (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2524adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2623, 25mpbird 256 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
2726olcd 872 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
2827a1d 25 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
2915, 21, 283jaodan 1430 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
30 ltpnf 13041 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 < +∞)
3130adantl 482 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞)
32 breq2 5109 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 < 𝐴𝐵 < +∞))
3332adantr 481 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < +∞))
3431, 33mpbird 256 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < 𝐴)
3534olcd 872 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐵 < 𝐴))
3635a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
37 eqtr3 2762 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐴 = 𝐵)
3837orcd 871 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵𝐵 < 𝐴))
3938a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
40 mnfltpnf 13047 . . . . . . . . . 10 -∞ < +∞
41 breq12 5110 . . . . . . . . . 10 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ < +∞))
4240, 41mpbiri 257 . . . . . . . . 9 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
4342ancoms 459 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
4443olcd 872 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
4544a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
4636, 39, 453jaodan 1430 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
47 mnflt 13044 . . . . . . . . 9 (𝐵 ∈ ℝ → -∞ < 𝐵)
4847adantl 482 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵)
49 breq1 5108 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5049adantr 481 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5148, 50mpbird 256 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵)
5251pm2.24d 151 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
53 breq12 5110 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
5440, 53mpbiri 257 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
5554pm2.24d 151 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
56 eqtr3 2762 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
5756orcd 871 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
5857a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
5952, 55, 583jaodan 1430 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6029, 46, 593jaoian 1429 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6111, 12, 60syl2anb 598 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6210, 61impbid 211 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) ↔ ¬ 𝐴 < 𝐵))
6362con2bid 354 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106   class class class wbr 5105  cr 11050  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194
This theorem is referenced by:  xrltso  13060  xrleloe  13063  xrltlen  13065
  Copyright terms: Public domain W3C validator