MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttri Structured version   Visualization version   GIF version

Theorem xrlttri 13075
Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 11118 or axlttri 11221. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlttri ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))

Proof of Theorem xrlttri
StepHypRef Expression
1 xrltnr 13055 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
21adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐴)
3 breq2 5106 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
43adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
52, 4mtbid 324 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
65ex 412 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
76adantr 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
8 xrltnsym 13073 . . . . 5 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
98ancoms 458 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
107, 9jaod 859 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) → ¬ 𝐴 < 𝐵))
11 elxr 13052 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
12 elxr 13052 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
13 axlttri 11221 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
1413biimprd 248 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 = 𝐵𝐵 < 𝐴) → 𝐴 < 𝐵))
1514con1d 145 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
16 ltpnf 13056 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 < +∞)
1716adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞)
18 breq2 5106 . . . . . . . . 9 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
1918adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵𝐴 < +∞))
2017, 19mpbird 257 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
2120pm2.24d 151 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
22 mnflt 13059 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < 𝐴)
2322adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ < 𝐴)
24 breq1 5105 . . . . . . . . . 10 (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2524adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
2623, 25mpbird 257 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
2726olcd 874 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
2827a1d 25 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
2915, 21, 283jaodan 1433 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
30 ltpnf 13056 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 < +∞)
3130adantl 481 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞)
32 breq2 5106 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 < 𝐴𝐵 < +∞))
3332adantr 480 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < +∞))
3431, 33mpbird 257 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 < 𝐴)
3534olcd 874 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐵 < 𝐴))
3635a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
37 eqtr3 2751 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐴 = 𝐵)
3837orcd 873 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵𝐵 < 𝐴))
3938a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
40 mnfltpnf 13062 . . . . . . . . . 10 -∞ < +∞
41 breq12 5107 . . . . . . . . . 10 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ < +∞))
4240, 41mpbiri 258 . . . . . . . . 9 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
4342ancoms 458 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 < 𝐴)
4443olcd 874 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
4544a1d 25 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
4636, 39, 453jaodan 1433 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
47 mnflt 13059 . . . . . . . . 9 (𝐵 ∈ ℝ → -∞ < 𝐵)
4847adantl 481 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵)
49 breq1 5105 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5049adantr 480 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
5148, 50mpbird 257 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵)
5251pm2.24d 151 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
53 breq12 5107 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
5440, 53mpbiri 258 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
5554pm2.24d 151 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
56 eqtr3 2751 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
5756orcd 873 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 = 𝐵𝐵 < 𝐴))
5857a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
5952, 55, 583jaodan 1433 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6029, 46, 593jaoian 1432 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6111, 12, 60syl2anb 598 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (𝐴 = 𝐵𝐵 < 𝐴)))
6210, 61impbid 212 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 = 𝐵𝐵 < 𝐴) ↔ ¬ 𝐴 < 𝐵))
6362con2bid 354 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109   class class class wbr 5102  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189
This theorem is referenced by:  xrltso  13077  xrleloe  13080  xrltlen  13082
  Copyright terms: Public domain W3C validator