MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-mulgt0 Structured version   Visualization version   GIF version

Theorem axpre-mulgt0 10246
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 10371. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 10270. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))

Proof of Theorem axpre-mulgt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10209 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10209 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq2 4815 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (0 <𝑥, 0R⟩ ↔ 0 < 𝐴))
43anbi1d 623 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 <𝑦, 0R⟩)))
5 oveq1 6853 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
65breq2d 4823 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · ⟨𝑦, 0R⟩)))
74, 6imbi12d 335 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩))))
8 breq2 4815 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐵))
98anbi2d 622 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
10 oveq2 6854 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
1110breq2d 4823 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (0 < (𝐴 · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · 𝐵)))
129, 11imbi12d 335 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))))
13 df-0 10200 . . . . . 6 0 = ⟨0R, 0R
1413breq1i 4818 . . . . 5 (0 <𝑥, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑥, 0R⟩)
15 ltresr 10218 . . . . 5 (⟨0R, 0R⟩ <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1614, 15bitri 266 . . . 4 (0 <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1713breq1i 4818 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
18 ltresr 10218 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1917, 18bitri 266 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
20 mulgt0sr 10183 . . . 4 ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦))
2116, 19, 20syl2anb 591 . . 3 ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0R <R (𝑥 ·R 𝑦))
2213a1i 11 . . . . 5 ((𝑥R𝑦R) → 0 = ⟨0R, 0R⟩)
23 mulresr 10217 . . . . 5 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
2422, 23breq12d 4824 . . . 4 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ ⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩))
25 ltresr 10218 . . . 4 (⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩ ↔ 0R <R (𝑥 ·R 𝑦))
2624, 25syl6bb 278 . . 3 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0R <R (𝑥 ·R 𝑦)))
2721, 26syl5ibr 237 . 2 ((𝑥R𝑦R) → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)))
281, 2, 7, 12, 272gencl 3389 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cop 4342   class class class wbr 4811  (class class class)co 6846  Rcnr 9944  0Rc0r 9945   ·R cmr 9949   <R cltr 9950  cr 10192  0cc0 10193   < cltrr 10197   · cmul 10198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-omul 7773  df-er 7951  df-ec 7953  df-qs 7957  df-ni 9951  df-pli 9952  df-mi 9953  df-lti 9954  df-plpq 9987  df-mpq 9988  df-ltpq 9989  df-enq 9990  df-nq 9991  df-erq 9992  df-plq 9993  df-mq 9994  df-1nq 9995  df-rq 9996  df-ltnq 9997  df-np 10060  df-1p 10061  df-plp 10062  df-mp 10063  df-ltp 10064  df-enr 10134  df-nr 10135  df-plr 10136  df-mr 10137  df-ltr 10138  df-0r 10139  df-m1r 10141  df-c 10199  df-0 10200  df-r 10203  df-mul 10205  df-lt 10206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator