| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpre-mulgt0 | Structured version Visualization version GIF version | ||
| Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11255. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11152. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-mulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 11091 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 11091 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | breq2 5114 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ 〈𝑥, 0R〉 ↔ 0 <ℝ 𝐴)) | |
| 4 | 3 | anbi1d 631 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉))) |
| 5 | oveq1 7397 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = (𝐴 · 〈𝑦, 0R〉)) | |
| 6 | 5 | breq2d 5122 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 〈𝑦, 0R〉))) |
| 7 | 4, 6 | imbi12d 344 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)))) |
| 8 | breq2 5114 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ 〈𝑦, 0R〉 ↔ 0 <ℝ 𝐵)) | |
| 9 | 8 | anbi2d 630 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵))) |
| 10 | oveq2 7398 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 · 〈𝑦, 0R〉) = (𝐴 · 𝐵)) | |
| 11 | 10 | breq2d 5122 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ (𝐴 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 𝐵))) |
| 12 | 9, 11 | imbi12d 344 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵)))) |
| 13 | df-0 11082 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
| 14 | 13 | breq1i 5117 | . . . . 5 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑥, 0R〉) |
| 15 | ltresr 11100 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) | |
| 16 | 14, 15 | bitri 275 | . . . 4 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) |
| 17 | 13 | breq1i 5117 | . . . . 5 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑦, 0R〉) |
| 18 | ltresr 11100 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) | |
| 19 | 17, 18 | bitri 275 | . . . 4 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) |
| 20 | mulgt0sr 11065 | . . . 4 ⊢ ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦)) | |
| 21 | 16, 19, 20 | syl2anb 598 | . . 3 ⊢ ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0R <R (𝑥 ·R 𝑦)) |
| 22 | 13 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 0 = 〈0R, 0R〉) |
| 23 | mulresr 11099 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = 〈(𝑥 ·R 𝑦), 0R〉) | |
| 24 | 22, 23 | breq12d 5123 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉)) |
| 25 | ltresr 11100 | . . . 4 ⊢ (〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉 ↔ 0R <R (𝑥 ·R 𝑦)) | |
| 26 | 24, 25 | bitrdi 287 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0R <R (𝑥 ·R 𝑦))) |
| 27 | 21, 26 | imbitrrid 246 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉))) |
| 28 | 1, 2, 7, 12, 27 | 2gencl 3493 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 (class class class)co 7390 Rcnr 10825 0Rc0r 10826 ·R cmr 10830 <R cltr 10831 ℝcr 11074 0cc0 11075 <ℝ cltrr 11079 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 df-1p 10942 df-plp 10943 df-mp 10944 df-ltp 10945 df-enr 11015 df-nr 11016 df-plr 11017 df-mr 11018 df-ltr 11019 df-0r 11020 df-m1r 11022 df-c 11081 df-0 11082 df-r 11085 df-mul 11087 df-lt 11088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |