MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-mulgt0 Structured version   Visualization version   GIF version

Theorem axpre-mulgt0 11128
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11255. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11152. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))

Proof of Theorem axpre-mulgt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11091 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11091 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq2 5114 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (0 <𝑥, 0R⟩ ↔ 0 < 𝐴))
43anbi1d 631 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 <𝑦, 0R⟩)))
5 oveq1 7397 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
65breq2d 5122 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · ⟨𝑦, 0R⟩)))
74, 6imbi12d 344 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩))))
8 breq2 5114 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐵))
98anbi2d 630 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
10 oveq2 7398 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
1110breq2d 5122 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (0 < (𝐴 · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · 𝐵)))
129, 11imbi12d 344 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))))
13 df-0 11082 . . . . . 6 0 = ⟨0R, 0R
1413breq1i 5117 . . . . 5 (0 <𝑥, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑥, 0R⟩)
15 ltresr 11100 . . . . 5 (⟨0R, 0R⟩ <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1614, 15bitri 275 . . . 4 (0 <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1713breq1i 5117 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
18 ltresr 11100 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1917, 18bitri 275 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
20 mulgt0sr 11065 . . . 4 ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦))
2116, 19, 20syl2anb 598 . . 3 ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0R <R (𝑥 ·R 𝑦))
2213a1i 11 . . . . 5 ((𝑥R𝑦R) → 0 = ⟨0R, 0R⟩)
23 mulresr 11099 . . . . 5 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
2422, 23breq12d 5123 . . . 4 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ ⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩))
25 ltresr 11100 . . . 4 (⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩ ↔ 0R <R (𝑥 ·R 𝑦))
2624, 25bitrdi 287 . . 3 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0R <R (𝑥 ·R 𝑦)))
2721, 26imbitrrid 246 . 2 ((𝑥R𝑦R) → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)))
281, 2, 7, 12, 272gencl 3493 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  (class class class)co 7390  Rcnr 10825  0Rc0r 10826   ·R cmr 10830   <R cltr 10831  cr 11074  0cc0 11075   < cltrr 11079   · cmul 11080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-1p 10942  df-plp 10943  df-mp 10944  df-ltp 10945  df-enr 11015  df-nr 11016  df-plr 11017  df-mr 11018  df-ltr 11019  df-0r 11020  df-m1r 11022  df-c 11081  df-0 11082  df-r 11085  df-mul 11087  df-lt 11088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator