MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-mulgt0 Structured version   Visualization version   GIF version

Theorem axpre-mulgt0 11056
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11184. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11080. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))

Proof of Theorem axpre-mulgt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11019 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11019 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq2 5095 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (0 <𝑥, 0R⟩ ↔ 0 < 𝐴))
43anbi1d 631 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 <𝑦, 0R⟩)))
5 oveq1 7353 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
65breq2d 5103 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · ⟨𝑦, 0R⟩)))
74, 6imbi12d 344 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩))))
8 breq2 5095 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐵))
98anbi2d 630 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
10 oveq2 7354 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
1110breq2d 5103 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (0 < (𝐴 · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · 𝐵)))
129, 11imbi12d 344 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))))
13 df-0 11010 . . . . . 6 0 = ⟨0R, 0R
1413breq1i 5098 . . . . 5 (0 <𝑥, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑥, 0R⟩)
15 ltresr 11028 . . . . 5 (⟨0R, 0R⟩ <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1614, 15bitri 275 . . . 4 (0 <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1713breq1i 5098 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
18 ltresr 11028 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1917, 18bitri 275 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
20 mulgt0sr 10993 . . . 4 ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦))
2116, 19, 20syl2anb 598 . . 3 ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0R <R (𝑥 ·R 𝑦))
2213a1i 11 . . . . 5 ((𝑥R𝑦R) → 0 = ⟨0R, 0R⟩)
23 mulresr 11027 . . . . 5 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
2422, 23breq12d 5104 . . . 4 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ ⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩))
25 ltresr 11028 . . . 4 (⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩ ↔ 0R <R (𝑥 ·R 𝑦))
2624, 25bitrdi 287 . . 3 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0R <R (𝑥 ·R 𝑦)))
2721, 26imbitrrid 246 . 2 ((𝑥R𝑦R) → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)))
281, 2, 7, 12, 272gencl 3479 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  (class class class)co 7346  Rcnr 10753  0Rc0r 10754   ·R cmr 10758   <R cltr 10759  cr 11002  0cc0 11003   < cltrr 11007   · cmul 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-ni 10760  df-pli 10761  df-mi 10762  df-lti 10763  df-plpq 10796  df-mpq 10797  df-ltpq 10798  df-enq 10799  df-nq 10800  df-erq 10801  df-plq 10802  df-mq 10803  df-1nq 10804  df-rq 10805  df-ltnq 10806  df-np 10869  df-1p 10870  df-plp 10871  df-mp 10872  df-ltp 10873  df-enr 10943  df-nr 10944  df-plr 10945  df-mr 10946  df-ltr 10947  df-0r 10948  df-m1r 10950  df-c 11009  df-0 11010  df-r 11013  df-mul 11015  df-lt 11016
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator