MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-mulgt0 Structured version   Visualization version   GIF version

Theorem axpre-mulgt0 11066
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11194. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11090. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))

Proof of Theorem axpre-mulgt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11029 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11029 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq2 5097 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (0 <𝑥, 0R⟩ ↔ 0 < 𝐴))
43anbi1d 631 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 <𝑦, 0R⟩)))
5 oveq1 7359 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
65breq2d 5105 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · ⟨𝑦, 0R⟩)))
74, 6imbi12d 344 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩))))
8 breq2 5097 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐵))
98anbi2d 630 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
10 oveq2 7360 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
1110breq2d 5105 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (0 < (𝐴 · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · 𝐵)))
129, 11imbi12d 344 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))))
13 df-0 11020 . . . . . 6 0 = ⟨0R, 0R
1413breq1i 5100 . . . . 5 (0 <𝑥, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑥, 0R⟩)
15 ltresr 11038 . . . . 5 (⟨0R, 0R⟩ <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1614, 15bitri 275 . . . 4 (0 <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1713breq1i 5100 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
18 ltresr 11038 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1917, 18bitri 275 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
20 mulgt0sr 11003 . . . 4 ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦))
2116, 19, 20syl2anb 598 . . 3 ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0R <R (𝑥 ·R 𝑦))
2213a1i 11 . . . . 5 ((𝑥R𝑦R) → 0 = ⟨0R, 0R⟩)
23 mulresr 11037 . . . . 5 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
2422, 23breq12d 5106 . . . 4 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ ⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩))
25 ltresr 11038 . . . 4 (⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩ ↔ 0R <R (𝑥 ·R 𝑦))
2624, 25bitrdi 287 . . 3 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0R <R (𝑥 ·R 𝑦)))
2721, 26imbitrrid 246 . 2 ((𝑥R𝑦R) → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)))
281, 2, 7, 12, 272gencl 3480 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093  (class class class)co 7352  Rcnr 10763  0Rc0r 10764   ·R cmr 10768   <R cltr 10769  cr 11012  0cc0 11013   < cltrr 11017   · cmul 11018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ec 8630  df-qs 8634  df-ni 10770  df-pli 10771  df-mi 10772  df-lti 10773  df-plpq 10806  df-mpq 10807  df-ltpq 10808  df-enq 10809  df-nq 10810  df-erq 10811  df-plq 10812  df-mq 10813  df-1nq 10814  df-rq 10815  df-ltnq 10816  df-np 10879  df-1p 10880  df-plp 10881  df-mp 10882  df-ltp 10883  df-enr 10953  df-nr 10954  df-plr 10955  df-mr 10956  df-ltr 10957  df-0r 10958  df-m1r 10960  df-c 11019  df-0 11020  df-r 11023  df-mul 11025  df-lt 11026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator