| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpre-mulgt0 | Structured version Visualization version GIF version | ||
| Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11248. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11145. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-mulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 11084 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 11084 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | breq2 5111 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ 〈𝑥, 0R〉 ↔ 0 <ℝ 𝐴)) | |
| 4 | 3 | anbi1d 631 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉))) |
| 5 | oveq1 7394 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = (𝐴 · 〈𝑦, 0R〉)) | |
| 6 | 5 | breq2d 5119 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 〈𝑦, 0R〉))) |
| 7 | 4, 6 | imbi12d 344 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)))) |
| 8 | breq2 5111 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ 〈𝑦, 0R〉 ↔ 0 <ℝ 𝐵)) | |
| 9 | 8 | anbi2d 630 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵))) |
| 10 | oveq2 7395 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 · 〈𝑦, 0R〉) = (𝐴 · 𝐵)) | |
| 11 | 10 | breq2d 5119 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ (𝐴 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 𝐵))) |
| 12 | 9, 11 | imbi12d 344 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵)))) |
| 13 | df-0 11075 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
| 14 | 13 | breq1i 5114 | . . . . 5 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑥, 0R〉) |
| 15 | ltresr 11093 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) | |
| 16 | 14, 15 | bitri 275 | . . . 4 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) |
| 17 | 13 | breq1i 5114 | . . . . 5 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑦, 0R〉) |
| 18 | ltresr 11093 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) | |
| 19 | 17, 18 | bitri 275 | . . . 4 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) |
| 20 | mulgt0sr 11058 | . . . 4 ⊢ ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦)) | |
| 21 | 16, 19, 20 | syl2anb 598 | . . 3 ⊢ ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0R <R (𝑥 ·R 𝑦)) |
| 22 | 13 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 0 = 〈0R, 0R〉) |
| 23 | mulresr 11092 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = 〈(𝑥 ·R 𝑦), 0R〉) | |
| 24 | 22, 23 | breq12d 5120 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉)) |
| 25 | ltresr 11093 | . . . 4 ⊢ (〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉 ↔ 0R <R (𝑥 ·R 𝑦)) | |
| 26 | 24, 25 | bitrdi 287 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0R <R (𝑥 ·R 𝑦))) |
| 27 | 21, 26 | imbitrrid 246 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉))) |
| 28 | 1, 2, 7, 12, 27 | 2gencl 3490 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 (class class class)co 7387 Rcnr 10818 0Rc0r 10819 ·R cmr 10823 <R cltr 10824 ℝcr 11067 0cc0 11068 <ℝ cltrr 11072 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-1p 10935 df-plp 10936 df-mp 10937 df-ltp 10938 df-enr 11008 df-nr 11009 df-plr 11010 df-mr 11011 df-ltr 11012 df-0r 11013 df-m1r 11015 df-c 11074 df-0 11075 df-r 11078 df-mul 11080 df-lt 11081 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |