MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-mulgt0 Structured version   Visualization version   GIF version

Theorem axpre-mulgt0 10590
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 10715. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 10614. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))

Proof of Theorem axpre-mulgt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10553 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10553 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq2 5070 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (0 <𝑥, 0R⟩ ↔ 0 < 𝐴))
43anbi1d 631 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 <𝑦, 0R⟩)))
5 oveq1 7163 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = (𝐴 · ⟨𝑦, 0R⟩))
65breq2d 5078 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · ⟨𝑦, 0R⟩)))
74, 6imbi12d 347 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩))))
8 breq2 5070 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐵))
98anbi2d 630 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
10 oveq2 7164 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 · ⟨𝑦, 0R⟩) = (𝐴 · 𝐵))
1110breq2d 5078 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (0 < (𝐴 · ⟨𝑦, 0R⟩) ↔ 0 < (𝐴 · 𝐵)))
129, 11imbi12d 347 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((0 < 𝐴 ∧ 0 <𝑦, 0R⟩) → 0 < (𝐴 · ⟨𝑦, 0R⟩)) ↔ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))))
13 df-0 10544 . . . . . 6 0 = ⟨0R, 0R
1413breq1i 5073 . . . . 5 (0 <𝑥, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑥, 0R⟩)
15 ltresr 10562 . . . . 5 (⟨0R, 0R⟩ <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1614, 15bitri 277 . . . 4 (0 <𝑥, 0R⟩ ↔ 0R <R 𝑥)
1713breq1i 5073 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
18 ltresr 10562 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1917, 18bitri 277 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
20 mulgt0sr 10527 . . . 4 ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦))
2116, 19, 20syl2anb 599 . . 3 ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0R <R (𝑥 ·R 𝑦))
2213a1i 11 . . . . 5 ((𝑥R𝑦R) → 0 = ⟨0R, 0R⟩)
23 mulresr 10561 . . . . 5 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) = ⟨(𝑥 ·R 𝑦), 0R⟩)
2422, 23breq12d 5079 . . . 4 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ ⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩))
25 ltresr 10562 . . . 4 (⟨0R, 0R⟩ < ⟨(𝑥 ·R 𝑦), 0R⟩ ↔ 0R <R (𝑥 ·R 𝑦))
2624, 25syl6bb 289 . . 3 ((𝑥R𝑦R) → (0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩) ↔ 0R <R (𝑥 ·R 𝑦)))
2721, 26syl5ibr 248 . 2 ((𝑥R𝑦R) → ((0 <𝑥, 0R⟩ ∧ 0 <𝑦, 0R⟩) → 0 < (⟨𝑥, 0R⟩ · ⟨𝑦, 0R⟩)))
281, 2, 7, 12, 272gencl 3535 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4573   class class class wbr 5066  (class class class)co 7156  Rcnr 10287  0Rc0r 10288   ·R cmr 10292   <R cltr 10293  cr 10536  0cc0 10537   < cltrr 10541   · cmul 10542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-1p 10404  df-plp 10405  df-mp 10406  df-ltp 10407  df-enr 10477  df-nr 10478  df-plr 10479  df-mr 10480  df-ltr 10481  df-0r 10482  df-m1r 10484  df-c 10543  df-0 10544  df-r 10547  df-mul 10549  df-lt 10550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator